scholarly journals Redox-triggered switching in three-dimensional covalent organic frameworks

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao Gao ◽  
Jian Li ◽  
Sheng Yin ◽  
Junliang Sun ◽  
Cheng Wang

Abstract The tuning of molecular switches in solid state toward stimuli-responsive materials has attracted more and more attention in recent years. Herein, we report a switchable three-dimensional covalent organic framework (3D COF), which can undergo a reversible transformation through a hydroquinone/quinone redox reaction while retaining the crystallinity and porosity. Our results clearly show that the switching process gradually happened through the COF framework, with an almost quantitative conversion yield. In addition, the redox-triggered transformation will form different functional groups on the pore surface and modify the shape of pore channel, which can result in tunable gas separation property. This study strongly demonstrates 3D COFs can provide robust platforms for efficient tuning of molecular switches in solid state. More importantly, switching of these moieties in 3D COFs can remarkably modify the internal pore environment, which will thus enable the resulting materials with interesting stimuli-responsive properties.

2017 ◽  
Vol 70 (11) ◽  
pp. 1227 ◽  
Author(s):  
Carol Hua ◽  
Stone Woo ◽  
Aditya Rawal ◽  
Floriana Tuna ◽  
James M. Hook ◽  
...  

A series of electroactive triarylamine porous organic polymers (POPs) with furan, thiophene, and selenophene (POP-O, POP-S, and POP-Se) linkers have been synthesised and their electronic and spectroscopic properties investigated as a function of redox state. Solid state NMR provided insight into the structural features of the POPs, while in situ solid state Vis-NIR and electron paramagnetic resonance spectroelectrochemistry showed that the distinct redox states in POP-S could be reversibly accessed. The development of redox-active porous organic polymers with heterocyclic linkers affords their potential application as stimuli responsive materials in gas storage, catalysis, and as electrochromic materials.


2019 ◽  
Vol 10 (41) ◽  
pp. 5602-5616 ◽  
Author(s):  
Felix Wendler ◽  
Jessica C. Tom ◽  
Felix H. Schacher

Photoacids experience a strong increase in acidity when absorbing light and, hence, can be considered as molecular switches. The incorporation into amphiphilic block copolymers leads to novel stimuli-responsive materials with great potential.


RSC Advances ◽  
2016 ◽  
Vol 6 (39) ◽  
pp. 32697-32704 ◽  
Author(s):  
Yong Zhan ◽  
Peng Gong ◽  
Peng Yang ◽  
Zhe Jin ◽  
Ying Bao ◽  
...  

Conjugated organic molecules exhibiting AIE are characterized by the strongly twisted conjugated skeleton, which could provide loose intermolecular stacking and weak π–π interactions in the solid state to generate stimuli-responsive materials.


2018 ◽  
Vol 9 (14) ◽  
pp. 3592-3606 ◽  
Author(s):  
Bibhisan Roy ◽  
Mallu Chenna Reddy ◽  
Partha Hazra

Establishing the structure–property relationship for multi-stimuli responsive mechanochromic materials based on charge transfer luminogens.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 563
Author(s):  
Sybele Saska ◽  
Livia Pilatti ◽  
Alberto Blay ◽  
Jamil Awad Shibli

Three-dimensional (3D) printing is a valuable tool in the production of complexes structures with specific shapes for tissue engineering. Differently from native tissues, the printed structures are static and do not transform their shape in response to different environment changes. Stimuli-responsive biocompatible materials have emerged in the biomedical field due to the ability of responding to other stimuli (physical, chemical, and/or biological), resulting in microstructures modifications. Four-dimensional (4D) printing arises as a new technology that implements dynamic improvements in printed structures using smart materials (stimuli-responsive materials) and/or cells. These dynamic scaffolds enable engineered tissues to undergo morphological changes in a pre-planned way. Stimuli-responsive polymeric hydrogels are the most promising material for 4D bio-fabrication because they produce a biocompatible and bioresorbable 3D shape environment similar to the extracellular matrix and allow deposition of cells on the scaffold surface as well as in the inside. Subsequently, this review presents different bioresorbable advanced polymers and discusses its use in 4D printing for tissue engineering applications.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5780
Author(s):  
Yiliang Wang ◽  
Liu-Pan Yang ◽  
Xiang Zhao ◽  
Lei Cui ◽  
Jian Li ◽  
...  

Conformational exchanges of synthetic macrocyclic acceptors are rather fast, which is rarely studied in the absence of guests. Here, we report multiple stimuli-responsive conformational exchanges between two preexisting conformations of 2,2′,4,4′-tetramethoxyl biphen[3]arene (MeBP3) macrocycle. Structures of these two conformations are both observed in solid state, and characterized by 1H NMR, 13C NMR and 2D NMR in solution. In particular, conformational exchanges can respond to solvents, temperatures, guest binding and acid/base addition. The current system may have a role to play in the construction of molecular switches and other stimuli-responsive systems.


2020 ◽  
Vol 10 (24) ◽  
pp. 9143
Author(s):  
Pedro Morouço ◽  
Bahareh Azimi ◽  
Mario Milazzo ◽  
Fatemeh Mokhtari ◽  
Cristiana Fernandes ◽  
...  

The applications of tissue engineered constructs have witnessed great advances in the last few years, as advanced fabrication techniques have enabled promising approaches to develop structures and devices for biomedical uses. (Bio-)printing, including both plain material and cell/material printing, offers remarkable advantages and versatility to produce multilateral and cell-laden tissue constructs; however, it has often revealed to be insufficient to fulfill clinical needs. Indeed, three-dimensional (3D) (bio-)printing does not provide one critical element, fundamental to mimic native live tissues, i.e., the ability to change shape/properties with time to respond to microenvironmental stimuli in a personalized manner. This capability is in charge of the so-called “smart materials”; thus, 3D (bio-)printing these biomaterials is a possible way to reach four-dimensional (4D) (bio-)printing. We present a comprehensive review on stimuli-responsive materials to produce scaffolds and constructs via additive manufacturing techniques, aiming to obtain constructs that closely mimic the dynamics of native tissues. Our work deploys the advantages and drawbacks of the mechanisms used to produce stimuli-responsive constructs, using a classification based on the target stimulus: humidity, temperature, electricity, magnetism, light, pH, among others. A deep understanding of biomaterial properties, the scaffolding technologies, and the implant site microenvironment would help the design of innovative devices suitable and valuable for many biomedical applications.


Author(s):  
Jae Gyeong Lee ◽  
Sukyoung Won ◽  
Jeong Eun Park ◽  
Jeong Jae Wie

Abstract The selective light absorption of pre-stretched thermoplastic polymeric films enables wireless photothermal shape morphing from two-dimensional Euclidean geometry of films to three-dimensional (3D) curvilinear architectures. For a facile origami-inspired programming of 3D folding, black inks are printed on glassy polymers that are used as hinges to generate light-absorption patterns. However, the deformation of unpatterned areas and/or stress convolution of patterned areas hinder the creation of accurate curvilinear structures. In addition, black inks remain in the film, prohibiting the construction of transparent 3D architectures. In this study, we demonstrate the facile preparation of transparent 3D curvilinear structures with the selection of the curvature sign and chirality via the selective light absorption of detachable tapes. The sequential removal of adhesive patterns allowed sequential folding and the control of strain responsivity in a single transparent architecture. The introduction of multiple heterogeneous non-responsive materials increased the complexity of strain engineering and functionality. External stimuli responsive kirigami-based bridge triggered the multi-material frame to build the Gaussian curvature. Conductive material casted on the film in a pattern retained the conductivity, despite local deformation. This type of tape patterning system, adopting various materials, can achieve multifunction including transparency and conductivity.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3396
Author(s):  
Irene Vassalini ◽  
Ivano Alessandri ◽  
Domenico de Ceglia

Stimuli-responsive materials offer a large variety of possibilities in fabrication of solid- state devices. Phase change materials (PCMs) undergo rapid and drastic changes of their optical properties upon switching from one crystallographic phase to another one. This peculiarity makes PCMs ideal candidates for a number of applications including sensors, active displays, photonic volatile and non-volatile memories for information storage and computer science and optoelectronic devices. This review analyzes different examples of PCMs, in particular germanium–antimonium tellurides and vanadium dioxide (VO2) and their applications in the above-mentioned fields, with a detailed discussion on potential, limitations and challenges.


Author(s):  
Gore S. A. ◽  
Gholve S. B. ◽  
Savalsure S. M. ◽  
Ghodake K. B. ◽  
Bhusnure O. G. ◽  
...  

Smart polymers are materials that respond to small external stimuli. These are also referred as stimuli responsive materials or intelligent materials. Smart polymers that can exhibit stimuli-sensitive properties are becoming important in many commercial applications. These polymers can change shape, strength and pore size based on external factors such as temperature, pH and stress. The stimuli include salt, UV irradiation, temperature, pH, magnetic or electric field, ionic factors etc. Smart polymers are very promising applicants in drug delivery, tissue engineering, cell culture, gene carriers, textile engineering, oil recovery, radioactive wastage and protein purification. The study is focused on the entire features of smart polymers and their most recent and relevant applications. Water soluble polymers with tunable lower critical solution temperature (LCST) are of increasing interest for biological applications such as cell patterning, smart drug release, DNA sequencing etc.


Sign in / Sign up

Export Citation Format

Share Document