Efficient synthesis of novel cyclic fused-phenothiazines via domino cyclization of 2-(benzo[b][1,4]thiazin-3-ylidene)acetate, aromatic aldehydes and cyclic 1,3-diketones

2019 ◽  
Vol 6 (20) ◽  
pp. 3555-3561 ◽  
Author(s):  
Jing Sun ◽  
Quan-Shun Sun ◽  
Chao-Guo Yan

Novel fused and bridged phenothiazine derivatives were selectively synthesized via an acid-promoted reaction of alkyl 2-(benzo[b][1,4]thiazin-3-ylidene)acetate, aromatic aldehydes and cyclic diketones under different reaction conditions.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Yuliang Zhang ◽  
Zhongqiang Zhou

A simple and efficient synthesis of 5-arylidene-2,4-thiazolidinediones by the Knoevenagel condensation of aromatic aldehydes with 2,4-thiazolidinedione catalyzed by ethylenediamine diacetate under solvent-free conditions is described. The major advantages of this method are simple experimental and work-up procedures, solvent-free reaction conditions, small amount of catalyst, short reaction time, high yields, and utilization of an inexpensive and reusable catalyst.


2015 ◽  
Vol 80 (5) ◽  
pp. 595-604 ◽  
Author(s):  
Nenad Jankovic ◽  
Zorica Bugarcic ◽  
Svetlana Markovic

An innovative route for the construction of 2-oxo and thioxo-1,2,3,4-tetrahydropyrimidines was delineated through a multicomponent reaction under Biginelli conditions, starting from different aromatic aldehydes, ?-ketoesters and urea or thiourea. Proper choice of copper complex (PhNH3)2CuCl4, as a novel homogeneous catalyst, enables facile, efficient, and inexpensive reaction under mild experimental conditions. Moreover, we present the first application of this complex salts in organic synthesis ever. The obtained products are of high purity, and can be easily isolated from the reaction mixture in good to excellent yields. Also, compared to the classical Biginelli reaction conditions, the present method has the advantages in higher yields and experimental and work-up simplicity. To illustrate the joint catalytic action of the Cu2+ and phenylammonium ions, two key steps of Biginelli reaction were examined using the M06 functional.


2014 ◽  
Vol 68 (8) ◽  
Author(s):  
Hamzeh Kiyani ◽  
Fatemeh Ghorbani

Abstract2-Amino-4-aryl-4H-benzo[h]chromenes and 3-amino-1-aryl-1H-benzo[f]chromenes were prepared by treating cyano-methylene compounds (malononitrile or ethyl cyanoacetate), substituted aromatic aldehydes, and naphtholic compounds in the presence of potassium phthalimide as a green, mild, efficient, and commercially available organocatalyst in aqueous media. The procedure was readily conducted and affords remarkable advantages such as safety, short reaction times, environmentally benign milder reaction conditions, no organic solvent required, and high yields.


2018 ◽  
Vol 15 (7) ◽  
pp. 982-988 ◽  
Author(s):  
Fahimeh S. Hosseini ◽  
Mohammad Bayat

Aim and Objectives: Development of simple synthetic routes for widely used organic compounds from readily available reagents is one of the major tasks in organic chemistry. Therefore, new approaches for increasing the molecular diversity of simple starting materials, are needed. Herein, an efficient synthesis of imidazo[1,2-a]pyridine, pyrido[1,2-a]pyrimidine and pyrido[1,2-a][1,3]diazepine derivatives is described. Materials and Methods: A one-pot, multi-component reaction of nitro ketene aminal derived from the addition of various 1,n-diamines to 1,1-bis(methylthio)-2-nitroethene with cyanoacetamide and aromatic aldehydes is described. The reactions are completed within 2-5 h, in ethanol at reflux, in good to high yields (70-93%). The structures of products were deduced from their IR, mass, 1H NMR, and 13C NMR spectra. Results: Optimal reaction conditions for the synthesis of products were obtained, when ethanol was used as the solvent at reflux. This protocol involves Michael reaction, imine–enamine tautomerization, and cyclization sequences. Conclusion: This work represents an efficient synthesis of imidazo[1,2-a]pyridine, pyrido[1,2-a]pyrimidine and pyrido[1,2-a][1,3]diazepine derivatives via a one-pot, multi-component reaction. The advantages of this protocol are mild conditions, easy accessibility of reactants, absence of catalyst, high atom economy, simple work-up and purification process with no chromatographic technique.


2020 ◽  
Vol 12 (4) ◽  
pp. 673-685
Author(s):  
M. A. Rahim ◽  
M. M. H. Bhuiayan ◽  
M. M. Matin

Microwave (MW) assisted synthetic technique was applied for the preparation of chalcone derivatives 5-7 employing Claisen-Schmidt condensation between 2-hydroxyacetophenone and aromatic aldehydes. These chalcones were further subjected to oxidative cyclization via MW irradiation and furnished the related flavones 8-10 which were characterized by FT-IR, 1H and 13CNMR spectra. The use of these MW assisted reactions provided higher productivity (92-98%) in shorter reaction time (2-6 min) with eco-friendly mild reaction conditions and hence found to be a convenient method as compared to conventional synthesis. These chalcones 5-7, and flavones 8-10 were screened for in vitro antimicrobial activities against five bacterial and three fungal pathogens. The study indicated that they were more active against fungal pathogens than that of bacterial organisms and comparable to the standard antifungal antibiotic nystatin. Interestingly, the prediction of activity spectra for substances (PASS) was also found in agreement with the in vitro results. Some of the compounds were found to have good ADMET properties.


2017 ◽  
Vol 61 (4) ◽  
pp. 278 ◽  
Author(s):  
Ágnes Magyar ◽  
Zoltán Hell

Molecular sieve supported lanthanum catalyst proved to be an efficient heterogeneous catalyst for the one-pot, four-component synthesis of polyhydroquinoline derivatives from aromatic aldehydes, dimedone, ethyl acetoacetate and ammonium acetate in ethanol via Hantzsch reaction. The method has several advantages such as simple reaction conditions, short reaction time, high yields and simple workup procedure, which make it an attractive route for the synthesis of polyhydroquinolines. The catalyst could be reused several times without the loss of its initial activity.


2020 ◽  
Vol 14 ◽  
Author(s):  
Soufiane Akhramez ◽  
Youness Achour ◽  
Mustapha Diba ◽  
Lahoucine Bahsis ◽  
Hajiba Ouchetto ◽  
...  

Background: In this study, an efficient synthesis of novel bispyrazole heterocyclic molecules by condensation of substituted aromatic aldehydes with 1,3-diketo-N-phenylpyrazole by using Mg/Al-LDH as heterogeneous catalyst is reported. The attractive features of this protocol are as follows: mild reaction conditions, good yields and easiness of the catalyst separation from the reaction mixture. Further, a mechanistic study has been performed by using DFT calculations to explain the observed selectivity of the condensation reaction between aryl aldehyde and 1,3-diketo-N-phenylpyrazole via Knoevenagel reaction. The local electrophilicity/ nucleophilicity that allows explaining correctly the experimental finding. Methods: The bispyrazole derivatives 3a-m were prepared by condensation reaction of substituted aromatic aldehydes with 1,3-diketo-Nphenylpyrazole by using Mg/Al-LDH as heterogeneous catalyst under THF solvent at the refluxing temperature. Objective: To synthesize a novel bispyrazole heterocyclic molecule may be have important biological activities and thus can be good candidates for pharmaceutical applications. Results: This protocol describes the Synthesis of Bioactive Compounds under mild reaction conditions, good yields and easiness of the catalyst separation from the reaction mixture. Further, a mechanistic study has been performed by using DFT calculations to explain the observed selectivity of the condensation reaction between aryl aldehyde and 1,3-diketo-N-phenylpyrazole via Knoevenagel reaction. The local electrophilicity/ nucleophilicity that allows explaining correctly the experimental finding. Conclusion: In summary, the pharmacologically interesting bis-pyrazole derivatives have been synthesized through Mg/Al-LDH as a solid base catalyst, in THF as solvent. Thus, the synthesized bioactive compounds containing the pyrazole ring may be have important biological activities and thus can be good candidates for pharmaceutical applications. Therefore, the catalyst Mg/Al-LDH showed high catalytic activity. Besides, a series of bispyrazole molecules were synthesized with a good yield and easy separation of the catalyst by simple filtration. Moreover, DFT calculations and reactivity indexes are used to explain the selectivity of the condensation reaction between aryl benzaldehyde and 1,3-diketo-Nphenylpyrazole via Knoevenagel reaction, and the results are in good agreement with the experimental finding.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajinkya More ◽  
Thomas Elder ◽  
Zhihua Jiang

Abstract This review discusses the main factors that govern the oxidation processes of lignins into aromatic aldehydes and acids using hydrogen peroxide. Aromatic aldehydes and acids are produced in the oxidative degradation of lignin whereas mono and dicarboxylic acids are the main products. The stability of hydrogen peroxide under the reaction conditions is an important factor that needs to be addressed for selectively improving the yield of aromatic aldehydes. Hydrogen peroxide in the presence of heavy metal ions readily decomposes, leading to minor degradation of lignin. This degradation results in quinones which are highly reactive towards peroxide. Under these reaction conditions, the pH of the reaction medium defines the reaction mechanism and the product distribution. Under acidic conditions, hydrogen peroxide reacts electrophilically with electron rich aromatic and olefinic structures at comparatively higher temperatures. In contrast, under alkaline conditions it reacts nucleophilically with electron deficient carbonyl and conjugated carbonyl structures in lignin. The reaction pattern in the oxidation of lignin usually involves cleavage of the aromatic ring, the aliphatic side chain or other linkages which will be discussed in this review.


2016 ◽  
Vol 18 (17) ◽  
pp. 4611-4615 ◽  
Author(s):  
Shiyao Liu ◽  
Naoki Suematsu ◽  
Keiji Maruoka ◽  
Seiji Shirakawa

An efficient synthesis of cyclic carbonates from epoxides and CO2 under mild reaction conditions was achieved via the use of a designed bifunctional quaternary phosphonium iodide catalyst.


Sign in / Sign up

Export Citation Format

Share Document