scholarly journals Strain sensitivity of band structure and electron mobility in perovskite BaSnO3: first-principles calculation

RSC Advances ◽  
2019 ◽  
Vol 9 (25) ◽  
pp. 14072-14077 ◽  
Author(s):  
Yaqin Wang ◽  
Runqing Sui ◽  
Mei Bi ◽  
Wu Tang ◽  
Sude Ma

A first-principles electronic structure calculation is utilized to contrastively investigate the crystal structure, band structure, electron effective mass and mobility of perovskite BaSnO3 under hydrostatic and biaxial strain.

2018 ◽  
Vol 6 (7) ◽  
pp. 1806-1814
Author(s):  
Jiayi Zheng ◽  
Song Wang ◽  
Lihong Gao ◽  
Zhuang Ma ◽  
Fuchi Wang ◽  
...  

The crystal structure, electronic structure and optical properties of Ba2SmTaO6 have been studied by first-principles calculation, including GGA and GGA+U, as well as by experimental methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Wujisiguleng Bao ◽  
Masaya Ichimura

The influence of secondary phases of ZnS and Cu2SnS3(CTS) in Cu2ZnSnS4(CZTS) absorber material has been studied by calculating the band offsets at the CTS/CZTS/ZnS multilayer heterojunction interfaces on the basis of the first principles band structure calculation. The ZnS/CZTS heterointerface is of type I and since ZnS has a larger band gap than that of CZTS, the ZnS phase in CZTS is predicted to be resistive barriers for carriers. The CTS/CZTS heterointerface is of type I; that is, the band gap of CTS is located within the band gap of CZTS. Therefore, the CTS phase will act as a recombination site in CZTS.


2007 ◽  
Vol 1040 ◽  
Author(s):  
Masayoshi Mikami ◽  
Hiromu Watanabe ◽  
Kyota Uheda ◽  
Naoto Kijima

AbstractNitridoaluminosilicate MAlSiN3(M: alkaline-earth element) and its derivatives have attracted more and more attention owing to the fact that the material doped with rare-earth element has intense body color and exhibit efficient luminescence under InGaN diode irradiation. In particular, red phosphor, Eu-doped CaAlSiN3 (CASN), has good thermal property of luminescence and sufficient chemical durability for white LED use. Still, for the lineup of various kinds of white color, it is hoped to tune the red luminescence with other physical/chemical properties kept as possible. Thus the derivatives with different chemical compositions have been intensively explored so far. For the feasibility of such chemical composition change, it is necessary to understand its atomic/electronic structure of the unique crystal, which is a distorted AlN-based wurtzite superstructure (Cmc21, No.36) with Al and Si disordered on 8b site and Ca occupying 4a site. Recently, we have performed first-principles band calculation of CASN and clarified the origin of the Al/Si disorder configuration as well as the feasibility of the virtual crystal approximation of heterovalent cations (Al/Si) for the reproducibility of atomic/electronic structure of CASN.[1] As a natural extension of this study, we have investigated some CASN-derivatives to confirm/predict the crystal structure. The VCA allows us to model the superstructure with various chemical compositions quite easily. In this work, we will present two examples of solid-solution, (Ca,Sr)AlSiN3 and CaAlSiN3-Si2N2O. The agreement between experiment and theory appears quite satisfactory. It is emphasized that the crystal structure of SrAlSiN3 has been successfully predicted by first-principles calculation prior to experimental result. The collaboration of experiment and theory promises us ‘gcrystal-engineering’ to develop new nitrides/oxynitrides effectively and efficiently.


2017 ◽  
Vol 31 (02) ◽  
pp. 1650263
Author(s):  
J. G. Yan ◽  
Z. J. Chen ◽  
G. B. Xu ◽  
Z. Kuang ◽  
T. H. Chen ◽  
...  

Using first-principles calculation we investigated the structural, electronic and elastic properties of paramagnetic CaFeAs2. Our results indicated that the density of states (DOS) was dominated predominantly by Fe-3[Formula: see text] states at Fermi levels, and stronger hybridization exists between As1 and As1 atoms. Three hole pockets are formed at [Formula: see text] and Z points, and two electronic pockets are formed at A and E points. The Dirac cone-like bands appear near B and D points. For the first time we calculated the elastic properties and found that CaFeAs2 is a mechanically stable and moderately hard material, it has elastic anisotropy and brittleness, which agrees well with the bonding picture and the calculation of Debye temperature ([Formula: see text]).


2014 ◽  
Vol 887-888 ◽  
pp. 378-383 ◽  
Author(s):  
Yu Chen ◽  
Zheng Jun Yao ◽  
Ping Ze Zhang ◽  
Dong Bo Wei ◽  
Xi Xi Luo ◽  
...  

The structure stability, mechanical properties and electronic structures of B2 phase FeAl intermetallic compounds and FeAl ternary alloys containing V, Cr or Ni were investigated using first-principles density functional theory calculations. Several models are established. The total energies, cohesive energies, lattice constants, elastic constants, density of states, and the charge densities of Fe8Al8 and Fe8XAl7 ( X=V, Cr, Ni ) are calculated. The stable crystal structures of alloy systems are determined due to the cohesive energy results. The calculated lattice contants of Fe-Al-X ( X= V, Cr, Ni) were found to be related to the atomic radii of the alloy elements. The calculation and analysis of the elastic constants showed that ductility of FeAl alloys was improved by the addition of V, Cr or Ni, the improvement was the highest when Cr was used. The order of the ductility was as follows: Fe8CrAl7 > Fe8NiAl7 > Fe8VAl7 > Fe8Al8. The results of electronic structure analysis showed that FeAl were brittle, mainly due to the orbital hybridization of the s, p and d state electron of Fe and the s and p state electrons of Al, showing typical characteristics of a valence bond. Micro-mechanism for improving ductility of FeAl is that d orbital electron of alloying element is maily involved in hybridization of FeAl, alloying element V, Cr and Ni decrease the directional property in bonding of FeAl.


Sign in / Sign up

Export Citation Format

Share Document