scholarly journals Robust fabrication of nanomaterial-based all-solid-state ion-selective electrodes

RSC Advances ◽  
2019 ◽  
Vol 9 (29) ◽  
pp. 16713-16717 ◽  
Author(s):  
Kaikai Liu ◽  
Xiaojing Jiang ◽  
Yuehai Song ◽  
Rongning Liang

For the first time, a general and facile approach for the robust fabrication of nanomaterial-based solid contact ISEs is reported.

2019 ◽  
Vol 11 (2) ◽  
pp. 156
Author(s):  
Johannes Schwarz ◽  
Ute Enseleit ◽  
Kathrin Trommer ◽  
Michael Mertig

Robust and easy-to-handle ion-selective electrodes in all-solid-state configurations based on graphite paste have been developed for applications in environmental samples. The electrode consists of different functional layers (graphite paste, conducting polymer, ion-selective membrane). The ion-selective compounds have been incorporated in polyvinylchloride (PVC) membranes. Polypyrrole (PPy) acts as a solid contact and an intermediate layer between the ion-selective membrane and the graphite paste. As ion-complexing compounds tridodecylmethylammonium nitrate (TDMA-NO3) for nitrate, N,N,N’,N’-tetra[cyclohexyl]diglycolic acid diamide and N,N-dicyclohexyl-N‘,N‘-dioctadecyl-diglycolic diamide for calcium(II) determinations have been used. The electrodes have been tested in drinking and well water samples by direct potentiometric determination and by titrations. The results have been compared to ion chromatography as the reference method. Both ion selective electrodes exhibit linear response from 10-5 mol/L to 10-1 mol/L respectively. The detection limits for the target ions are below 10-6 mol/L based on the respective ion.


The Analyst ◽  
2017 ◽  
Vol 142 (20) ◽  
pp. 3857-3866 ◽  
Author(s):  
Shinichi Komaba ◽  
Tatsuya Akatsuka ◽  
Kohei Ohura ◽  
Chihiro Suzuki ◽  
Naoaki Yabuuchi ◽  
...  

Ion sensor performance is highly improved by the installation of insertion materials applied in rechargeable Li, Na, and K batteries.


The Analyst ◽  
2011 ◽  
Vol 136 (16) ◽  
pp. 3252 ◽  
Author(s):  
Jean-Pierre Veder ◽  
Roland De Marco ◽  
Graeme Clarke ◽  
San Ping Jiang ◽  
Kathryn Prince ◽  
...  

Talanta ◽  
2021 ◽  
pp. 122491
Author(s):  
Marek Dębosz ◽  
József Kozma ◽  
Radosław Porada ◽  
Marcin Wieczorek ◽  
Justyna Paluch ◽  
...  

Chemosensors ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Ville Yrjänä ◽  
Indrek Saar ◽  
Mihkel Ilisson ◽  
Sandip A. Kadam ◽  
Ivo Leito ◽  
...  

Solid-contact ion-selective electrodes with carbazole-derived ionophores were prepared. They were characterized as acetate sensors, but can be used to determine a number of carboxylates. The potentiometric response characteristics (slope, detection limit, selectivity, and pH sensitivity) of sensors prepared with different membrane compositions (ionophore, ionophore concentration, anion exchanger concentration, and plasticizer) were evaluated. The results show that for the macrocyclic ionophores, a larger cavity provided better selectivity. The sensors exhibited modest selectivity for acetate but good selectivity for benzoate. The carbazole-derived ionophores effectively decreased the interference from lipophilic anions, such as bromide, nitrate, iodide, and thiocyanate. The selectivity, detection limit, and linear range were improved by choosing a suitable plasticizer and by reducing the ionophore and anion exchanger concentrations. The influence of the electrode body’s material upon the composition of the plasticized poly(vinyl chloride) membrane, and thus also upon the sensor characteristics, was also studied. The choice of materials for the electrode body significantly affected the characteristics of the sensors.


2021 ◽  
Vol 188 (5) ◽  
Author(s):  
Elena Zdrachek ◽  
Eric Bakker

AbstractThe capacitance of the ion-to-electron transducer layer helps to maintain a high potential stability of solid-contact ion-selective electrodes (SC-ISEs), and its estimation is therefore an essential step of SC-ISE characterization. The established chronopotentiometric protocol used to evaluate the capacitance of the single-walled carbon nanotube transducer layer was revised in order to obtain more reliable and better reproducible values and also to allow capacitance to be measured before membrane deposition for electrode manufacturing quality control purposes. The capacitance values measured with the revised method increased linearly with the number of deposited carbon nanotube–based transducer layers and were also found to correlate linearly before and after ion-selective membrane deposition, with correlation slopes close to 1 for nitrate-selective electrodes, to 0.7 and to 0.5 for potassium- and calcium-selective electrodes. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document