scholarly journals Highly sensitive strain sensors based on hollow packaged silver nanoparticle-decorated three-dimensional graphene foams for wearable electronics

RSC Advances ◽  
2019 ◽  
Vol 9 (68) ◽  
pp. 39958-39964
Author(s):  
Xinxiu Wu ◽  
Fangfang Niu ◽  
Ao Zhong ◽  
Fei Han ◽  
Yun Chen ◽  
...  

Silver nanoparticle-decorated three-dimensional graphene foams were prepared and packaged with half-cured PMDS films, forming a special “hollow packaged” structure that exhibited high sensitivity for wearable strain sensor applications.


Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13599-13606 ◽  
Author(s):  
Binghao Liang ◽  
Zhiqiang Lin ◽  
Wenjun Chen ◽  
Zhongfu He ◽  
Jing Zhong ◽  
...  

A highly stretchable and sensitive strain sensor based on a gradient carbon nanotube was developed. The strain sensors show an unprecedented combination of both high sensitivity (gauge factor = 13.5) and ultra-stretchability (>550%).



MRS Advances ◽  
2016 ◽  
Vol 1 (34) ◽  
pp. 2415-2420 ◽  
Author(s):  
Jinhui Li ◽  
Guoping Zhang ◽  
Rong Sun ◽  
C. P. Wong

ABSTRACTFlexible electronics has emerged as a very promising field, in particular,wearable, bendable, and stretchable strain sensors with high sensitivity which could be used for human motion detection, sports performance monitoring, etc. In this paper, a highly stretchable and sensitive strain sensor composed of reduced graphene oxide foam and elastomer composite is fabricated by assembly and followed by a polymer immersing process. The strain sensor has demonstrated high stretchability and sensitivity. Furthermore, the device was employed for gauging muscle-induced strain which results in high sensitivity and reproducibility. The developed strain sensors showed great application potential in fields of biomechanical systems.



Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1701
Author(s):  
Ken Suzuki ◽  
Ryohei Nakagawa ◽  
Qinqiang Zhang ◽  
Hideo Miura

In this study, a basic design of area-arrayed graphene nanoribbon (GNR) strain sensors was proposed to realize the next generation of strain sensors. To fabricate the area-arrayed GNRs, a top-down approach was employed, in which GNRs were cut out from a large graphene sheet using an electron beam lithography technique. GNRs with widths of 400 nm, 300 nm, 200 nm, and 50 nm were fabricated, and their current-voltage characteristics were evaluated. The current values of GNRs with widths of 200 nm and above increased linearly with increasing applied voltage, indicating that these GNRs were metallic conductors and a good ohmic junction was formed between graphene and the electrode. There were two types of GNRs with a width of 50 nm, one with a linear current–voltage relationship and the other with a nonlinear one. We evaluated the strain sensitivity of the 50 nm GNR exhibiting metallic conduction by applying a four-point bending test, and found that the gauge factor of this GNR was about 50. Thus, GNRs with a width of about 50 nm can be used to realize a highly sensitive strain sensor.



2017 ◽  
Vol 5 (40) ◽  
pp. 10571-10577 ◽  
Author(s):  
Fengling Chen ◽  
Yousong Gu ◽  
Shiyao Cao ◽  
Yong Li ◽  
Feng Li ◽  
...  

Novel, flexible and highly sensitive strain sensors were fabricated using graphite granular films by low-cost carbon-evaporation.



2018 ◽  
Vol 2 (2) ◽  
pp. 355-361 ◽  
Author(s):  
Xi Fan ◽  
Naixiang Wang ◽  
Jinzhao Wang ◽  
Bingang Xu ◽  
Feng Yan

A stretchable plastic strain sensor was fabricated, showing high sensitivity and a broad strain-sensing region with good durability.



Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2333
Author(s):  
Huiying Shen ◽  
Huizhen Ke ◽  
Jingdong Feng ◽  
Chenyu Jiang ◽  
Qufu Wei ◽  
...  

Owing to the multi-dimensional complexity of human motions, traditional uniaxial strain sensors lack the accuracy in monitoring dynamic body motions working in different directions, thus multidirectional strain sensors with excellent electromechanical performance are urgently in need. Towards this goal, in this work, a stretchable biaxial strain sensor based on double elastic fabric (DEF) was developed by incorporating carboxylic multi-walled carbon nanotubes(c-MWCNTs) and polypyrrole (PPy) into fabric through simple, scalable soaking and adsorption-oxidizing methods. The fabricated DEF/c-MWCNTs/PPy strain sensor exhibited outstanding anisotropic strain sensing performance, including relatively high sensitivity with the maximum gauge factor (GF) of 5.2, good stretchability of over 80%, fast response time < 100 ms, favorable electromechanical stability, and durability for over 800 stretching–releasing cycles. Moreover, applications of DEF/c-MWCNTs/PPy strain sensor for wearable devices were also reported, which were used for detecting human subtle motions and dynamic large-scale motions. The unconventional applications of DEF/c-MWCNTs/PPy strain sensor were also demonstrated by monitoring complex multi-degrees-of-freedom synovial joint motions of human body, such as neck and shoulder movements, suggesting that such materials showed a great potential to be applied in wearable electronics and personal healthcare monitoring.



2016 ◽  
Vol 4 (1) ◽  
pp. 157-166 ◽  
Author(s):  
Hu Liu ◽  
Yilong Li ◽  
Kun Dai ◽  
Guoqiang Zheng ◽  
Chuntai Liu ◽  
...  

Strain sensors with high sensitivity are reported in the thermoplastic polyurethane nanocomposites with ultralow graphene loading.



Nanoscale ◽  
2017 ◽  
Vol 9 (31) ◽  
pp. 11035-11046 ◽  
Author(s):  
Ju Young Kim ◽  
Seulgi Ji ◽  
Sungmook Jung ◽  
Beyong-Hwan Ryu ◽  
Hyun-Suk Kim ◽  
...  

We demonstrate 3D-printed, highly-sensitive strain sensor devices by formulating the 3D-printable dough including hybrid carbon composites.



Nanoscale ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 2191-2198 ◽  
Author(s):  
Jun-Hong Pu ◽  
Xiang-Jun Zha ◽  
Min Zhao ◽  
Shengyao Li ◽  
Rui-Ying Bao ◽  
...  

A highly sensitive strain sensor with end-to-end CNT networks and showing a high gauge factor (248) at small strain (5%) is fabricated.



2017 ◽  
Vol 5 (39) ◽  
pp. 10167-10175 ◽  
Author(s):  
Fei Han ◽  
Jinhui Li ◽  
Songfang Zhao ◽  
Yuan Zhang ◽  
Wangping Huang ◽  
...  

A highly stretchable and ultra-sensitive strain sensor based on a nickel nanoparticle-coated graphene polyurethane sponge (Ni@GPUS) ternary hybrid material was fabricated.



Sign in / Sign up

Export Citation Format

Share Document