Highly sensitive, durable and stretchable plastic strain sensors using sandwich structures of PEDOT:PSS and an elastomer

2018 ◽  
Vol 2 (2) ◽  
pp. 355-361 ◽  
Author(s):  
Xi Fan ◽  
Naixiang Wang ◽  
Jinzhao Wang ◽  
Bingang Xu ◽  
Feng Yan

A stretchable plastic strain sensor was fabricated, showing high sensitivity and a broad strain-sensing region with good durability.


Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13599-13606 ◽  
Author(s):  
Binghao Liang ◽  
Zhiqiang Lin ◽  
Wenjun Chen ◽  
Zhongfu He ◽  
Jing Zhong ◽  
...  

A highly stretchable and sensitive strain sensor based on a gradient carbon nanotube was developed. The strain sensors show an unprecedented combination of both high sensitivity (gauge factor = 13.5) and ultra-stretchability (>550%).



RSC Advances ◽  
2019 ◽  
Vol 9 (68) ◽  
pp. 39958-39964
Author(s):  
Xinxiu Wu ◽  
Fangfang Niu ◽  
Ao Zhong ◽  
Fei Han ◽  
Yun Chen ◽  
...  

Silver nanoparticle-decorated three-dimensional graphene foams were prepared and packaged with half-cured PMDS films, forming a special “hollow packaged” structure that exhibited high sensitivity for wearable strain sensor applications.



2018 ◽  
Vol 2 (3) ◽  
pp. 620-620 ◽  
Author(s):  
Xi Fan ◽  
Naixiang Wang ◽  
Jinzhao Wang ◽  
Bingang Xu ◽  
Feng Yan

Correction for ‘Highly sensitive, durable and stretchable plastic strain sensors using sandwich structures of PEDOT:PSS and an elastomer’ by Xi Fan et al., Mater. Chem. Front., 2018, 2, 355–361.



Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1701
Author(s):  
Ken Suzuki ◽  
Ryohei Nakagawa ◽  
Qinqiang Zhang ◽  
Hideo Miura

In this study, a basic design of area-arrayed graphene nanoribbon (GNR) strain sensors was proposed to realize the next generation of strain sensors. To fabricate the area-arrayed GNRs, a top-down approach was employed, in which GNRs were cut out from a large graphene sheet using an electron beam lithography technique. GNRs with widths of 400 nm, 300 nm, 200 nm, and 50 nm were fabricated, and their current-voltage characteristics were evaluated. The current values of GNRs with widths of 200 nm and above increased linearly with increasing applied voltage, indicating that these GNRs were metallic conductors and a good ohmic junction was formed between graphene and the electrode. There were two types of GNRs with a width of 50 nm, one with a linear current–voltage relationship and the other with a nonlinear one. We evaluated the strain sensitivity of the 50 nm GNR exhibiting metallic conduction by applying a four-point bending test, and found that the gauge factor of this GNR was about 50. Thus, GNRs with a width of about 50 nm can be used to realize a highly sensitive strain sensor.



Author(s):  
Ryohei Nakagawa ◽  
Zhi Wang ◽  
Ken Suzuki

Health monitoring devices using a strain sensor, which shows high sensitivity and large deformability, are strongly demanded due to further aging of society with fewer children. Conventional strain sensors, such as metallic strain gauges and semiconductive strain sensors, however, aren’t applicable to health monitoring because of their low sensitivity and deformability. In this study, fundamental design of area-arrayed graphene nano-ribbon (GNR) strain senor was proposed in order to fabricate next-generation strain sensor. The sensor was consisted of two sections, which are stress concentration section and stress detecting section. This structure can take full advantage of GNR’s properties. Moreover, high quality GNR fabrication process, which is one of the important process in the sensor, was developed by applying CVD (Chemical Vapor Deposition) method. Top-down approach was applied to fabricate the GNR. At first, in order to synthesize a high-quality graphene sheet, acetylene-based LPCVD (low pressure chemical vapor deposition) using a closed Cu foil was employed. After that, graphene was transferred silicon substrate and the quality was evaluated. The high quality graphene was transferred on the soft PDMS substrate and metallic electrodes were fabricated by applying MEMS technology. Area-arrayed fine pin structure was fabricated by using hard PDMS as a stress-concentration section. Finally, both sections were integrated to form a highly sensitive and large deformable pressure sensor. The strain sensitivity of the GNR-base sensor was also evaluated.



Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1970 ◽  
Author(s):  
Donghyeon Ryu ◽  
Alfred Mongare

In this study, a flexible strain sensor is devised using corrugated bilayer thin films consisting of poly(3-hexylthiophene) (P3HT) and poly(3,4-ethylenedioxythiophene)-polystyrene(sulfonate) (PEDOT:PSS). In previous studies, the P3HT-based photoactive non-corrugated thin film was shown to generate direct current (DC) under broadband light, and the generated DC voltage varied with applied tensile strain. Yet, the mechanical resiliency and strain sensing range of the P3HT-based thin film strain sensor were limited due to brittle non-corrugated thin film constituents. To address this issue, it is aimed to design a mechanically resilient strain sensor using corrugated thin film constituents. Buckling is induced to form corrugation in the thin films by applying pre-strain to the substrate, where the thin films are deposited, and releasing the pre-strain afterwards. It is known that corrugated thin film constituents exhibit different optical and electronic properties from non-corrugated ones. Therefore, to design the flexible strain sensor, it was studied to understand how the applied pre-strain and thickness of the PEDOT:PSS conductive thin film affects the optical and electrical properties. In addition, strain effect was investigated on the optical and electrical properties of the corrugated thin film constituents. Finally, flexible strain sensors are fabricated by following the design guideline, which is suggested from the studies on the corrugated thin film constituents, and the DC voltage strain sensing capability of the flexible strain sensors was validated. As a result, the flexible strain sensor exhibited a tensile strain sensing range up to 5% at a frequency up to 15 Hz with a maximum gauge factor ~7.



Nanoscale ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 5884-5890 ◽  
Author(s):  
Zuoli He ◽  
Gengheng Zhou ◽  
Joon-Hyung Byun ◽  
Sang-Kwan Lee ◽  
Moon-Kwang Um ◽  
...  

In this manuscript, we report a novel highly sensitive wearable strain sensor based on a highly stretchable multi-walled carbon nanotube (MWCNT)/Thermoplastic Polyurethane (TPU) fiber obtained via a wet spinning process.



Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4867 ◽  
Author(s):  
Sung-Yeob Jeong ◽  
Yong-Won MA ◽  
Jun-Uk Lee ◽  
Gyeong-Ju Je ◽  
Bo-sung Shin

A laser-induced-graphene (LIG) pattern fabricated using a 355 nm pulsed laser was applied to a strain sensor. Structural analysis and functional evaluation of the LIG strain sensor were performed by Raman spectroscopy, scanning electron microscopy (SEM) imaging, and electrical–mechanical coupled testing. The electrical characteristics of the sensor with respect to laser fluence and focal length were evaluated. The sensor responded sensitively to small deformations, had a high gauge factor of ~160, and underwent mechanical fracture at 30% tensile strain. In addition, we have applied the LIG sensor, which has high sensitivity, a simple manufacturing process, and good durability, to human finger motion monitoring.



2020 ◽  
Vol 8 (39) ◽  
pp. 20531-20542
Author(s):  
Shuhua Peng ◽  
Shuying Wu ◽  
Yuyan Yu ◽  
Philippe Blanloeuil ◽  
Chun H. Wang

A new highly sensitive and stretchable strain sensor with excellent linearity and optical transparency has been developed by toughening of microcracks within the thin conductive films.



Author(s):  
Giang T. Pham ◽  
Alessio Colombo ◽  
Young-Bin Park ◽  
Chuck Zhang ◽  
Ben Wang

This paper presents the development of polymer-nanofiller systems as strain sensor materials and the development of novel sensor fabrication and characterization techniques. The developed sensor has shown to overcome the limitations of conventional strain sensors — having the capability to measure macroscale strains in any desired direction over a finite surface area, which may be subjected to combined loading modes, including tension, compression, flexure, and shear. They have sufficient flexibility and toughness to accommodate most curved surfaces and corners in components and structures. The methodologies use high aspect ratio multi-walled carbon nanotubes (MWNTs) in order to take advantage of their capability to form efficient conductive network. The results will lead to tailoring of sensor performance, particularly sensitivity factor, by controlling conductive network and optimizing sensor design and fabrication. To date, sensitivity factor of almost 20 at 1 wt.% of MWNTs in poly(methyl methacrylate) (PMMA) has been achieved. The developed sensor can be used in various military and commercial applications, including macroscale strain sensing over a wide surface area (e.g. aircraft skin), high sensitivity strain sensing on stiff components, and crack detection at critical stress concentrated regions for health monitoring.



Sign in / Sign up

Export Citation Format

Share Document