Three-Dimensional Graphene-Based Composite for Elastic Strain Sensor Applications

MRS Advances ◽  
2016 ◽  
Vol 1 (34) ◽  
pp. 2415-2420 ◽  
Author(s):  
Jinhui Li ◽  
Guoping Zhang ◽  
Rong Sun ◽  
C. P. Wong

ABSTRACTFlexible electronics has emerged as a very promising field, in particular,wearable, bendable, and stretchable strain sensors with high sensitivity which could be used for human motion detection, sports performance monitoring, etc. In this paper, a highly stretchable and sensitive strain sensor composed of reduced graphene oxide foam and elastomer composite is fabricated by assembly and followed by a polymer immersing process. The strain sensor has demonstrated high stretchability and sensitivity. Furthermore, the device was employed for gauging muscle-induced strain which results in high sensitivity and reproducibility. The developed strain sensors showed great application potential in fields of biomechanical systems.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2333
Author(s):  
Huiying Shen ◽  
Huizhen Ke ◽  
Jingdong Feng ◽  
Chenyu Jiang ◽  
Qufu Wei ◽  
...  

Owing to the multi-dimensional complexity of human motions, traditional uniaxial strain sensors lack the accuracy in monitoring dynamic body motions working in different directions, thus multidirectional strain sensors with excellent electromechanical performance are urgently in need. Towards this goal, in this work, a stretchable biaxial strain sensor based on double elastic fabric (DEF) was developed by incorporating carboxylic multi-walled carbon nanotubes(c-MWCNTs) and polypyrrole (PPy) into fabric through simple, scalable soaking and adsorption-oxidizing methods. The fabricated DEF/c-MWCNTs/PPy strain sensor exhibited outstanding anisotropic strain sensing performance, including relatively high sensitivity with the maximum gauge factor (GF) of 5.2, good stretchability of over 80%, fast response time < 100 ms, favorable electromechanical stability, and durability for over 800 stretching–releasing cycles. Moreover, applications of DEF/c-MWCNTs/PPy strain sensor for wearable devices were also reported, which were used for detecting human subtle motions and dynamic large-scale motions. The unconventional applications of DEF/c-MWCNTs/PPy strain sensor were also demonstrated by monitoring complex multi-degrees-of-freedom synovial joint motions of human body, such as neck and shoulder movements, suggesting that such materials showed a great potential to be applied in wearable electronics and personal healthcare monitoring.



RSC Advances ◽  
2019 ◽  
Vol 9 (68) ◽  
pp. 39958-39964
Author(s):  
Xinxiu Wu ◽  
Fangfang Niu ◽  
Ao Zhong ◽  
Fei Han ◽  
Yun Chen ◽  
...  

Silver nanoparticle-decorated three-dimensional graphene foams were prepared and packaged with half-cured PMDS films, forming a special “hollow packaged” structure that exhibited high sensitivity for wearable strain sensor applications.



2020 ◽  
Vol 305 (3) ◽  
pp. 1900813 ◽  
Author(s):  
Baowei Cheng ◽  
Shulong Chang ◽  
Hui Li ◽  
Yunxing Li ◽  
Weixia Shen ◽  
...  


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 339
Author(s):  
Wei Pan ◽  
Juan Wang ◽  
Yong-Ping Li ◽  
Xiao-Bo Sun ◽  
Jin-Ping Wang ◽  
...  

Stretchable nano-fibers have attracted dramatic attention for the utility in wearable and flexible electronics. In the present case, Ag nanowires (AgNWs)-intertwined thermoplastic polyurethanes (TPU) unwoven nano-membrane is fabricated by an electrospinning method and dip coating technique. Then a strain sensor with a spring-like configuration is fabricated by a twisted method. The sensor exhibits superior electrical conductivity up to 3990 S·cm−1 due to the high weight percentage of the Ag nanowires. Additionally, thanks to the free-standing spring-like configuration that consists of uniform neat loops, the strain sensor can detect a superior strain up to 900% at the point the sensor ruptures. On the other hand, the configuration can mostly protect the AgNWs from falling off. Furthermore, major human motion detection, like movement of a human forefinger, and minor human motion detection, such as a wrist pulse, show the possible application of the sensor in the field of flexible electronics.



Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 472 ◽  
Author(s):  
Xu Zheng ◽  
Qing Wang ◽  
Jinjin Luan ◽  
Yao Li ◽  
Ning Wang

Wearable health monitoring smart systems based on flexible metal films are considered to be the next generation of devices for remote medical practice. However, cracks on the metallic surface of the films and difficulty in repeatability are the key issues that restrict the application of such wearable strain sensors. In this work, a flexible wearable strain sensor with high sensitivity and good repeatability was fabricated based on a patterned metal/polymer composite material fabricated through nanoimprint lithography. The mechanical properties were measured through cyclic tension and bending loading. The sensor exhibited a small ΔR/R0 error line for multiple test pieces, indicating the good mechanical stability and repeatability of the fabricated device. Moreover, the sensor possesses high sensitivity with gauge factors of 10 for strain less than 50% and 40 for strain from 50% to 70%. Various activities were successfully detected in real-time, such as swallowing, closing/opening of the mouth, and multi-angle bending of elbow, which illustrates the proposed sensor’s potential as a wearable device for the human body.



2019 ◽  
Vol 54 (3) ◽  
pp. 423-434 ◽  
Author(s):  
MB Azizkhani ◽  
Sh Rastgordani ◽  
A. Pourkamali Anaraki ◽  
J Kadkhodapour ◽  
B Shirkavand Hadavand

Tuning the electromechanical performance in piezoresistive composite strain sensors is primarily attained through appropriately employing the materials system and the fabrication process. High sensitivity along with flexibility in the strain sensing devices needs to be met according to the application (e.g. human motion detection, health and sports monitoring). In this paper, a highly stretchable and sensitive strain sensor with a low-cost fabrication is proposed which is acquired by embedding the chopped carbon fibers sandwiched in between silicone rubber layers. The electrical and mechanical features of the sensor were characterized through stretch/release loading tests where a considerably high sensitivity (the gauge factor about 100) was observed with very low hysteresis. This implies high strain reversibility (i.e. full recovery in each cycle) over 700 loading cycles. Moreover, the sensors exhibited ultra-high stretchability (up to ∼300% elongation) in addition to a low stiffness meaning minimal mechanical effects induced by the sensor for sensitive human motion monitoring applications including large and small deformations. The results suggest the promising capability of the present sensor in reflecting the human body motion detection.



2019 ◽  
Vol 7 (43) ◽  
pp. 13468-13476 ◽  
Author(s):  
Min Zhao ◽  
Dawei Li ◽  
Jieyu Huang ◽  
Di Wang ◽  
Alfred Mensah ◽  
...  

Stretchable and wearable electronics, as a well-researched engineering frontier, can be applied in human motion detection, thermal therapy, personal healthcare monitoring and smart human–machine interactions.



Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13599-13606 ◽  
Author(s):  
Binghao Liang ◽  
Zhiqiang Lin ◽  
Wenjun Chen ◽  
Zhongfu He ◽  
Jing Zhong ◽  
...  

A highly stretchable and sensitive strain sensor based on a gradient carbon nanotube was developed. The strain sensors show an unprecedented combination of both high sensitivity (gauge factor = 13.5) and ultra-stretchability (>550%).



Sign in / Sign up

Export Citation Format

Share Document