scholarly journals Synthesis of a fine LiNi0.88Co0.09Al0.03O2 cathode material for lithium-ion batteries via a solvothermal route and its improved high-temperature cyclic performance

RSC Advances ◽  
2020 ◽  
Vol 10 (17) ◽  
pp. 9917-9923 ◽  
Author(s):  
Guolin Cao ◽  
Jie Zhu ◽  
Yunjiao Li ◽  
Yuan Zhou ◽  
Zhuomin Jin ◽  
...  

Nickel–Cobalt–Aluminum (NCA) cathode materials for lithium-ion batteries (LIBs) are conventionally synthesized by chemical co-precipitation.

2019 ◽  
Vol 944 ◽  
pp. 1179-1186 ◽  
Author(s):  
Yue Hua Wang ◽  
Li Wen Ma ◽  
Yun He Zhang ◽  
Zhao Jie Huang ◽  
Xiao Li Xi

With the development of new energy vehicles, urgent issues have attracted considerable attention. Some power batteries have entered the scrapping period, with the imperative recycling of used power batteries. Some studies have predicted that by 2020, the amount of power lithium battery scrap will reach 32.2 GWh, corresponding to ~500,000 tons, and by 2023, the scrap will reach 101 GWh, corresponding to ~1.16 million tons. In this study, nickel-cobalt-lithium LiNi0.7Co0.3O2cathode materials are regenerated from spent lithium-ion battery cathode materials as the raw material, which not only aids in the reduction of pressure on the environment but also leads to the recycling of resources. First, extraction is employed using extracting agent p204 to remove aluminum ions from an acid leaching solution. Extraction conditions for aluminum ions are: include a phase ratio of 1:2,a pH of 3, an extractant concentration of 30%, and a saponification rate of 70%.Next, the precursor was prepared by co-precipitation using sodium hydroxide and ammonia water as the precipitant and complexion agents, respectively; hence, the cathode material can be uniformly mixed at the atomic level. The precursor and lithium hydroxide were subjected to calcination at high temperature using a high-temperature solid-phase method. The Calcination conditions include an air atmosphere ; a calcination temperature of 800° °C ; a calcination time of 15 h, an n (precursor): n (lithium hydroxide) ratio of 1:1.1.The Thermogravimetric analysis revealed that the synthesis temperature should not exceed 850°C. X-ray diffraction analysis, scanning electron microscopy, and energy spectrum analysis of the cathode material revealed a composition comprising Li, Ni, and Co oxides. After analysis, the material obtained is lithium nickel-cobalt-oxide, LiNi0.7Co0.3O2, which is a positive electrode material with good crystallinity and a regular layered structure.


2017 ◽  
Vol 5 (17) ◽  
pp. 7952-7960 ◽  
Author(s):  
Jianlong Li ◽  
Mingwu Xiang ◽  
Yan Wang ◽  
Jinhua Wu ◽  
Hang Zhao ◽  
...  

A facile co-precipitation approach combined with spray-drying and high-temperature calcinations was developed to synthesize LiMn0.8Fe0.2PO4/C microspheres on a large scale.


RSC Advances ◽  
2016 ◽  
Vol 6 (100) ◽  
pp. 97818-97824 ◽  
Author(s):  
Zhonghui Sun ◽  
Liansheng Jiao ◽  
Yingying Fan ◽  
Fenghua Li ◽  
Dandan Wang ◽  
...  

Three different types of spherical cathodes (Li[Ni0.6Co0.2Mn0.2]O2) were synthesized via hydroxide co-precipitation method coupled with high temperature lithiation process.


RSC Advances ◽  
2015 ◽  
Vol 5 (61) ◽  
pp. 49651-49656 ◽  
Author(s):  
Y. L. Wang ◽  
X. Huang ◽  
F. Li ◽  
J. S. Cao ◽  
S. H. Ye

Pristine LNCM and LNCMA as Li-rich cathode materials for lithium ion batteries were synthesized via a sol–gel route. The Al-substituted LNCM sample exhibits an enhanced high rate performance and superior cyclability.


2019 ◽  
Vol 953 ◽  
pp. 121-126
Author(s):  
Zhe Chen ◽  
Quan Fang Chen ◽  
Sha Ne Zhang ◽  
Guo Dong Xu ◽  
Mao You Lin ◽  
...  

High energy density and rechargeable lithium ion batteries are attracting widely interest in renewable energy fields. The preparation of the high performance materials for electrodes has been regarded as the most challenging and innovative aspect. By utilizing a facile combustion synthesis method, pure nanostructure LiNi0.5Mn1.5O4 cathode material for lithium ion batteries were successfully fabricated. The crystal phase of the samples were characterized by X-Ray Diffraction, and micro-morphology as well as electrochemistry properties were also evaluated using FE-SEM, electrochemical charge-discharge test. The result shows the fabricated LiNi0.5Mn1.5O4 cathode materials had outstanding crystallinity and near-spherical morphologies. That obtained LiNi0.5Mn1.5O4 samples delivered an initial discharge capacity of 137.2 mAhg-1 at the 0.1 C together with excellent cycling stability and rate capability as positive electrodes in a lithium cell. The superior electrochemical performance of the as-prepared samples are owing to nanostructure particles possessing the shorter diffusion path for Li+ transport, and the nanostructure lead to large contact area to effectively improve the charge/discharge properties and the rate property. It is demonstrated that the as-prepared nanostructure LiNi0.5Mn1.5O4 samples have potential as cathode materials of lithium-ion battery for future new energy vehicles.


2019 ◽  
Vol 943 ◽  
pp. 141-148 ◽  
Author(s):  
Xiao Tong Jiang ◽  
Pan Wang ◽  
Long Hui Li ◽  
Jia Yu ◽  
Yu Xin Yin ◽  
...  

The cathode materials of LiFePO4 batteries decreases due to the gradual loss of lithium content during use. In this paper, the spent cathode materials were recycled with a carbon layer coated. The samples were prepared by a high temperature impurity removal procession and a solid phase repairing method. The LiFePO4 material obtained by the regeneration process has a discharge specific capacity of 105.4 mAh/g at 0.1 C after 10 cycles, and keeps it a considerable retention of 73.1 mAh/g at 1 C. This work provides a new routine in reusing lithium ion batteries.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 40 ◽  
Author(s):  
Jun Liu ◽  
Qiming Liu ◽  
Huali Zhu ◽  
Feng Lin ◽  
Yan Ji ◽  
...  

Li-rich layered oxide cathode materials have become one of the most promising cathode materials for high specific energy lithium-ion batteries owning to its high theoretical specific capacity, low cost, high operating voltage and environmental friendliness. Yet they suffer from severe capacity and voltage attenuation during prolong cycling, which blocks their commercial application. To clarify these causes, we synthesize Li1.5Mn0.55Ni0.4Co0.05O2.5 (Li1.2Mn0.44Ni0.32Co0.04O2) with high-nickel-content cathode material by a solid-sate complexation method, and it manifests a lot slower capacity and voltage attenuation during prolong cycling compared to Li1.5Mn0.66Ni0.17Co0.17O2.5 (Li1.2Mn0.54Ni0.13Co0.13O2) and Li1.5Mn0.65Ni0.25Co0.1O2.5 (Li1.2Mn0.52Ni0.2Co0.08O2) cathode materials. The capacity retention at 1 C after 100 cycles reaches to 87.5% and the voltage attenuation after 100 cycles is only 0.460 V. Combining X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), it indicates that increasing the nickel content not only stabilizes the structure but also alleviates the attenuation of capacity and voltage. Therefore, it provides a new idea for designing of Li-rich layered oxide cathode materials that suppress voltage and capacity attenuation.


Sign in / Sign up

Export Citation Format

Share Document