scholarly journals Studies on the effects of different multiwalled carbon nanotube functionalization techniques on the properties of bio-based hybrid non-isocyanate polyurethane

RSC Advances ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 2180-2190 ◽  
Author(s):  
Xin He ◽  
Xiaoling Xu ◽  
Guangxu Bo ◽  
Yunjun Yan

Different types of surface modification on MWCNTs can affect the thermal stability and water absorption of composites.

2016 ◽  
Vol 49 (2) ◽  
pp. 99-119 ◽  
Author(s):  
Saowaroj Chuayjuljit ◽  
Piyaphorn Mungmeechai ◽  
Anyaporn Boonmahitthisud

Epoxidized natural rubber (ENR)/multiwalled carbon nanotube (MWCNT) nanocomposites were prepared via in situ epoxidation of natural rubber (NR) using a molar ratio of formic acid/hydrogen peroxide to isoprene unit at 0.75/0.75 with five loadings of MWCNTs, ranging from 0.5–2.5 parts per hundred parts of rubber (phr), at 50°C for 4 h. Based on Fourier transform infrared spectra, the epoxide content of ENR in the nanocomposites was about 32.5–33.2 mole%. Accordingly, the products were referred to ENR30/MWCNT nanocomposites. The curing characteristics, mechanical properties (tensile properties, tear strength, and hardness), glass transition temperature ( Tg), thermal stability, and oil resistance of these in situ ENR30/MWCNT nanocomposites were investigated and compared with NR and neat ENR30. The results showed that the scorch and cure times of ENR30/MWCNT nanocomposites were the longest followed by NR and ENR30. The incorporation of an appropriate amount of MWCNTs into the in situ epoxidation apparently improved the properties of NR. Among them, the nanocomposites filled with 2 phr MWCNTs exhibited the highest mechanical properties, Tg, thermal stability, and oil resistance. The mechanical properties of the in situ nanocomposites were also compared with those of the control nanocomposites prepared by adding MWCNTs directly in the prepared ENR30 latex. It was found that at similar MWCNT loadings, the in situ nanocomposites exhibited higher mechanical properties than the control nanocomposites.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Li Qiu ◽  
Yongkang Chen ◽  
Yongzhen Yang ◽  
Lihua Xu ◽  
Xuguang Liu

The effects of surface modification of carbon nanotube on the properties of polyamide 66/multiwalled carbon nanotube composites have been investigated. Polyamide 66 (PA66) and multiwalled carbon nanotube (MWCNT) composites were prepared by melt mixing. The surfaces of MWCNTs were modified with acid- and amine-groups. Field emission scanning electron microscopy analyses revealed that amine-MWCNTs (D-MWCNTs) dispersed better in the PA66 matrix than pristine- and acid-MWCNTs. However, an introduction of D-MWCNTs into PA66 matrix induced heterogeneous nucleation and affected the crystal growth process during the crystallization of PA66/MWCNT composites. Both nanoindentation and friction analyses were carried out in a study of the effect of the introduction of modified MWCNTs on both mechanical and friction properties of the composites. With the introduction of D-MWCNTs, both nanohardness and elastic modulus of the composites were significantly improved, but it was observed that the maximum depth, nanohardness, and elastic modulus of the composites showed no distinct change before and after a friction test. It is evident that PA66/D-MWCNT composites have the least friction coefficient of the PA66/MWCNT composites of all the approaches of carbon nanotube surface modification.


Sign in / Sign up

Export Citation Format

Share Document