scholarly journals A first-principles computational comparison of defect-free and disordered, fluorinated anatase TiO2 (001) interfaces with water

RSC Advances ◽  
2020 ◽  
Vol 10 (15) ◽  
pp. 8982-8988 ◽  
Author(s):  
Kyle G. Reeves ◽  
Damien Dambournet ◽  
Christel Laberty-Robert ◽  
Rodolphe Vuilleumier ◽  
Mathieu Salanne

Chemical doping and other surface modifications have been used to engineer the bulk properties of materials, but their influence on the surface structure and consequently the surface chemistry are often unknown.

2018 ◽  
Author(s):  
Kyle Reeves ◽  
Damien Dambournet ◽  
Christel Laberty-Robert ◽  
Rodolphe Vuilleumier ◽  
Mathieu Salanne

Chemical doping and other surface modifications have been used to engineer the bulk properties of materials, but their influence on the surface structure and consequently the surface chemistry are often unknown. Previous work has been successful in fluorinating anatase TiO<sub>2</sub> with charge balance achieved via the introduction of Ti vacancies rather than the reduction of Ti. Our work here investigates the interface between this fluorinated titanate with cationic vacancies and a<br>monolayer of water via density functional theory based molecular dynamics. We compute the projected density of states for only those atoms at the interface and for those states that fall within 1eV of the Fermi energy for various steps throughout the simulation, and we determine that the<br>variation in this representation of the density of states serves as a reasonable tool to anticipate where surfaces are most likely to be reactive. In particular, we conclude that water dissociation at the surface is the main mechanism that influences the anatase (001) surface whereas the change in<br>the density of states at the surface of the fluorinated structure is influenced primarily through the adsorption of water molecules at the surface.


2018 ◽  
Author(s):  
Kyle Reeves ◽  
Damien Dambournet ◽  
Christel Laberty-Robert ◽  
Rodolphe Vuilleumier ◽  
Mathieu Salanne

Chemical doping and other surface modifications have been used to engineer the bulk properties of materials, but their influence on the surface structure and consequently the surface chemistry are often unknown. Previous work has been successful in fluorinating anatase TiO<sub>2</sub> with charge balance achieved via the introduction of Ti vacancies rather than the reduction of Ti. Our work here investigates the interface between this fluorinated titanate with cationic vacancies and a<br>monolayer of water via density functional theory based molecular dynamics. We compute the projected density of states for only those atoms at the interface and for those states that fall within 1eV of the Fermi energy for various steps throughout the simulation, and we determine that the<br>variation in this representation of the density of states serves as a reasonable tool to anticipate where surfaces are most likely to be reactive. In particular, we conclude that water dissociation at the surface is the main mechanism that influences the anatase (001) surface whereas the change in<br>the density of states at the surface of the fluorinated structure is influenced primarily through the adsorption of water molecules at the surface.


2019 ◽  
Vol 26 (01) ◽  
pp. 1830006 ◽  
Author(s):  
MATHEUS PEGO ◽  
JANAÍNA CARVALHO ◽  
DAVID GUEDES

The main and new surface modification methods of activated carbon (AC) and their influence on application (adsorption capacity) were reviewed. Adsorption capacity is an important issue, contributing to hazardous substances environment management. According to literature, it is true that surface chemistry strongly affects adsorption capacity. Surface chemistry can be modified by several methods that lead to different activated carbon properties. Furthermore, adsorbate properties, and their relationships with surface structure, can impact adsorption properties. Surface modifications can be conducted by adding some atoms to the surface structure, making the surface more acidic or basic. Introduction of oxygen and ammonia atoms (chemical modification) are the main processes to make the surface more acidic and basic, respectively, although may bring chemical wastes to environment. Surface modification is done by chemical and physical modifications that lead activated carbons to present different properties. The main and new methods of chemical and physical modifications are compared and presented in this paper. Some new physical methods, like corona treatment, plasma discharge and microwave radiation, can be applied to cause surface modifications. Corona treatment can be a practical and new way to cause surface modification on an activated carbon surface.


2020 ◽  
Vol 8 ◽  
Author(s):  
Christopher Sutton ◽  
Sergey V. Levchenko

In most applications, functional materials operate at finite temperatures and are in contact with a reservoir of atoms or molecules (gas, liquid, or solid). In order to understand the properties of materials at realistic conditions, statistical effects associated with configurational sampling and particle exchange at finite temperatures must consequently be taken into account. In this contribution, we discuss the main concepts behind equilibrium statistical mechanics. We demonstrate how these concepts can be used to predict the behavior of materials at realistic temperatures and pressures within the framework of atomistic thermodynamics. We also introduce and discuss methods for calculating phase diagrams of bulk materials and surfaces as well as point defect concentrations. In particular, we describe approaches for calculating the configurational density of states, which requires the evaluation of the energies of a large number of configurations. The cluster expansion method is therefore also discussed as a numerically efficient approach for evaluating these energies.


2012 ◽  
Vol 58 ◽  
pp. 24-30 ◽  
Author(s):  
Raina Wanbayor ◽  
Peter Deák ◽  
Thomas Frauenheim ◽  
Vithaya Ruangpornvisuti

Sign in / Sign up

Export Citation Format

Share Document