Photocatalysis in a multi-capillary assembly microreactor: toward up-scaling the synthesis of 2H-indazoles as drug scaffolds

2019 ◽  
Vol 4 (8) ◽  
pp. 1466-1471 ◽  
Author(s):  
Seungwook Jang ◽  
Shinde Vidyacharan ◽  
Bandaru T. Ramanjaneyulu ◽  
Ki-Won Gyak ◽  
Dong-Pyo Kim

Visible-light-promoted direct arylation of 2H-indazoles using phenyldiazonium salt enabled a single-step and fast synthesis (<1 min) of C3 arylated products in high yields (>65%) in an eosin Y immobilized capillary microreactor.

2019 ◽  
Vol 2019 (47) ◽  
pp. 7730-7734 ◽  
Author(s):  
Bandaru T. Ramanjaneyulu ◽  
Shinde Vidyacharan ◽  
Se Jun Yim ◽  
Dong-Pyo Kim

Synlett ◽  
2020 ◽  
Author(s):  
Xinxin Tang ◽  
Jie Wu ◽  
Haiwang Liu ◽  
Fei Xue ◽  
Mu Wang

AbstractStyrene derivatives were hydroacylated with exclusive anti-Markovnikov selectivity by using neutral eosin Y as a direct hydrogen-atom-transfer (HAT) catalyst under visible-light irradiation. Aldehydes and styrenes with various substituents were tolerated (>20 examples), giving the corresponding products in moderate to high yields. The key acyl radical intermediate was generated from a direct HAT process induced by photoexcited eosin Y. Subsequent addition to styrenes and a reverse HAT process generated the ketone products.


Author(s):  
Antoine Goujon ◽  
Lou Rocard ◽  
Thomas Cauchy ◽  
Piétrick Hudhomme

AzaBenzannulated PDI (AzaBPDI) dyes were synthesized in high yields via a new reaction sequence involving an imine condensation followed by visible light-induced photocyclization. The large scope and efficiency of this alternative to the Pictet-Spengler reaction is demonstrated, and allows the easy preparation of dimeric AzaBPDI as potential non-fullerene acceptors for organic solar cells.


2020 ◽  
Vol 07 ◽  
Author(s):  
Avik K. Bagdi ◽  
Papiya Sikdar

Abstract:: Organic synthesis under environment friendly conditions has great impact in the sustainable development. In this context, visible light photocatalysis has emerged as a green model as this offers an energy-efficient pathway towards the organic transformation. Different transition-metal catalysts (Ir-, Ru-, Cu- etc) and organic dyes (eosin Y, rose bengal, methylene blue etc) are well-known photocatalysts in organic synthesis. Apart from the well-known organophotoredox catalysts, rhodamines (Rhodamine B and Rhodamine 6G) have been also employed as efficient photocatalysts for different organic transformations. In this review, we will focus on the photocatalysis by rhodamines in organic synthesis. Mechanistic pathway of the methodologies will also be discussed. We believe this review will stimulate the employment of rhodamines in the visible light photocatalysis for efficient organic transformations in the future.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lukas Rieder ◽  
Katharina Ebner ◽  
Anton Glieder ◽  
Morten Sørlie

Abstract Background Lytic polysaccharide monooxygenases (LPMOs) are attracting large attention due their ability to degrade recalcitrant polysaccharides in biomass conversion and to perform powerful redox chemistry. Results We have established a universal Pichia pastoris platform for the expression of fungal LPMOs using state-of-the-art recombination cloning and modern molecular biological tools to achieve high yields from shake-flask cultivation and simple tag-less single-step purification. Yields are very favorable with up to 42 mg per liter medium for four different LPMOs spanning three different families. Moreover, we report for the first time of a yeast-originating signal peptide from the dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1 (OST1) form S. cerevisiae efficiently secreting and successfully processes the N-terminus of LPMOs yielding in fully functional enzymes. Conclusion The work demonstrates that the industrially most relevant expression host P. pastoris can be used to express fungal LPMOs from different families in high yields and inherent purity. The presented protocols are standardized and require little equipment with an additional advantage with short cultivation periods.


2021 ◽  
Vol 19 (16) ◽  
pp. 3735-3742
Author(s):  
Se Hyun Kim ◽  
Ju Hyeon An ◽  
Jun Hee Lee

Here, we provide an operationally simple protocol for the highly chemoselective deoxygenation of various functionalized N-heterocyclic N-oxides under visible light-mediated photoredox conditions with Na2-eosin Y as an organophotocatalyst.


2018 ◽  
Vol 16 (4) ◽  
pp. 536-540 ◽  
Author(s):  
Rajendra S. Rohokale ◽  
Shrikant D. Tambe ◽  
Umesh A. Kshirsagar

An eosin Y photoredox catalyzed net redox neutral process for 3-sulfonylindoles via the anionic oxidation of sodium sulfinate salts and its radical cascade cyclization with 2-alkynyl-azidoarenes was developed with visible light as a mediator.


Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1259 ◽  
Author(s):  
Mahboobeh Shahbazi ◽  
Henrietta Cathey ◽  
Natalia Danilova ◽  
Ian Mackinnon

Crystalline Ni2B, Ni3B, and Ni4B3 are synthesized by a single-step method using autogenous pressure from the reaction of NaBH4 and Ni precursors. The effect of reaction temperature, pressure, time, and starting materials on the composition of synthesized products, particle morphologies, and magnetic properties is demonstrated. High yields of Ni2B (>98%) are achieved at 2.3–3.4 MPa and ~670 °C over five hours. Crystalline Ni3B or Ni4B3 form in conjunction with Ni2B at higher temperature or higher autogenous pressure in proportions influenced by the ratios of initial reactants. For the same starting ratios of reactants, a longer reaction time or higher pressure shifts equilibria to lower yields of Ni2B. Using this approach, yields of ~88% Ni4B3 (single phase orthorhombic) and ~72% Ni3B are obtained for conditions 1.9 MPa < Pmax < 4.9 MPa and 670 °C < Tmax < 725 °C. Gas-solid reaction is the dominant transformation mechanism that results in formation of Ni2B at lower temperatures than conventional solid-state methods.


2013 ◽  
Vol 37 (12) ◽  
pp. 4119 ◽  
Author(s):  
Arvind K. Yadav ◽  
Vishnu P. Srivastava ◽  
Lal Dhar S. Yadav
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document