Rhodamines as Photocatalyst in Organic Synthesis

2020 ◽  
Vol 07 ◽  
Author(s):  
Avik K. Bagdi ◽  
Papiya Sikdar

Abstract:: Organic synthesis under environment friendly conditions has great impact in the sustainable development. In this context, visible light photocatalysis has emerged as a green model as this offers an energy-efficient pathway towards the organic transformation. Different transition-metal catalysts (Ir-, Ru-, Cu- etc) and organic dyes (eosin Y, rose bengal, methylene blue etc) are well-known photocatalysts in organic synthesis. Apart from the well-known organophotoredox catalysts, rhodamines (Rhodamine B and Rhodamine 6G) have been also employed as efficient photocatalysts for different organic transformations. In this review, we will focus on the photocatalysis by rhodamines in organic synthesis. Mechanistic pathway of the methodologies will also be discussed. We believe this review will stimulate the employment of rhodamines in the visible light photocatalysis for efficient organic transformations in the future.

2019 ◽  
Vol 4 (12) ◽  
Author(s):  
Indrajit Ghosh

Abstract Over the last decade, visible light photocatalysis has dramatically increased the arsenal of methods for organic synthesis and changed the way we activate molecules for chemical reactions. Polypyridyl transition metal complexes, redox-active organic dyes, and inorganic semiconductors are typically used as photocatalysts for such transformations. This chapter reviews the applications of radical anions and anions as photosensitizers in visible light photoredox catalysis.


Author(s):  
Vishal Srivastava ◽  
Pravin Kumar Singh ◽  
Shraddha Tivari ◽  
Praveen Pratap Singh

Visible light and photoredox catalysis have emerged as a powerful and long-lasting tool for organic synthesis, demonstrating the importance of a variety of chemical bond formation methods. Natural products, physiologically...


2018 ◽  
Vol 54 (96) ◽  
pp. 13587-13590 ◽  
Author(s):  
Yuxing Huang ◽  
Zhuo Xin ◽  
Wenlong Yao ◽  
Qi Hu ◽  
Zhuohua Li ◽  
...  

A novel recyclable composite catalyst (Fe3O4-RB/LDH) formed by stable self-assembly of Fe3O4 NPs, rose bengal, and layered double hydroxides can catalyze various organic transformations with high efficiency in water under visible light irradiation.


2018 ◽  
Vol 38 (11) ◽  
pp. 2807 ◽  
Author(s):  
Wenxiu Xu ◽  
Xiaoqiang Dai ◽  
Hanjing Xu ◽  
Jianquan Weng

2022 ◽  
Author(s):  
Yasmine S Zubi ◽  
Bingqing Liu ◽  
Yifan Gu ◽  
Dipankar Sahoo ◽  
Jared C Lewis

Visible light photocatalysis enables a broad range of organic transformations that proceed via single electron or energy transfer. Metal polypyridyl complexes are among the most commonly employed visible light photocatalysts....


Synthesis ◽  
2019 ◽  
Vol 51 (16) ◽  
pp. 3021-3054 ◽  
Author(s):  
Yi Wei ◽  
Quan-Quan Zhou ◽  
Fen Tan ◽  
Liang-Qiu Lu ◽  
Wen-Jing Xiao

Visible-light-driven organic photochemical reactions have attracted substantial attention from the synthetic community. Typically, catalytic quantities of photosensitizers, such as transition metal complexes, organic dyes, or inorganic semiconductors, are necessary to absorb visible light and trigger subsequent organic transformations. Recently, in contrast to these photocatalytic processes, a variety of photocatalyst-free organic photochemical transformations have been exploited for the efficient formation of carbon–carbon and carbon–heteroatom bonds. In addition to not requiring additional photocatalysts, they employ low-energy visible light irradiation, have mild reaction conditions, and enable broad substrate diversity and functional group tolerance. This review will focus on a summary of representative work in this field in terms of different photoexcitation modes.1 Introduction2 Visible Light Photoexcitation of a Single Substrate3 Visible Light Photoexcitation of Reaction Intermediates4 Visible Light Photoexcitation of EDA Complexes between Substrates5 Visible Light Photoexcitation of EDA Complexes between Substrates and Reaction Intermediates6 Visible Light Photoexcitation of Products7 Conclusion and Outlook


2016 ◽  
Vol 6 (2) ◽  
pp. 349-362 ◽  
Author(s):  
Jun Chen ◽  
Jie Cen ◽  
Xiaoliang Xu ◽  
Xiaonian Li

The recent advances of organic synthesis reactions based on heterogeneous visible-light photocatalysis are reviewed.


2020 ◽  
Vol 8 (15) ◽  
pp. 7003-7034 ◽  
Author(s):  
Tian-Xiong Wang ◽  
Hai-Peng Liang ◽  
Dejene Assefa Anito ◽  
Xuesong Ding ◽  
Bao-Hang Han

Porous organic polymers are efficient photocatalysts in organic synthesis, hydrogen evolution, CO2 reduction, and degradation of organic pollutants.


Sign in / Sign up

Export Citation Format

Share Document