scholarly journals Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning

2019 ◽  
Vol 10 (35) ◽  
pp. 8154-8163 ◽  
Author(s):  
Yao Zhang ◽  
Alpha A. Lee

We report a statistically principled method to quantify the uncertainty of machine learning models for molecular properties prediction. We show that this uncertainty estimate can be used to judiciously design experiments.

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1932
Author(s):  
Ramyar Saeedi ◽  
Keyvan Sasani ◽  
Assefaw H. Gebremedhin

Mobile health monitoring plays a central role in the future of cyber physical systems (CPS) for healthcare applications. Such monitoring systems need to process user data accurately. Unlike in other human-centered CPS, in healthcare CPS, the user functions in multiple roles all at the same time: as an operator, an actuator, the physical environment and, most importantly, the target that needs to be monitored in the process. Therefore, mobile health CPS devices face highly dynamic settings generally, and accuracy of the machine learning models the devices employ may drop dramatically every time a change in setting happens. Novel learning architecture that specifically address challenges associated with dynamic environments are therefore needed. Using active learning and transfer learning as organizing principles, we propose a collaborative multiple-expert architecture and accompanying algorithms for the design of machine learning models that autonomously adapt to a new configuration, context, or user need. Specifically, our architecture and its constituent algorithms are designed to manage heterogeneous knowledge sources or experts with varying levels of confidence and type while minimizing adaptation cost. Additionally, our framework incorporates a mechanism for collaboration among experts to enrich their knowledge, which in turn decreases both cost and uncertainty of data labeling in future steps. We evaluate the efficacy of the architecture using two publicly available human activity datasets. We attain activity recognition accuracy of over 85 % (for the first dataset) and 92 % (for the second dataset) by labeling only 15 % of unlabeled data.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Ye Sheng ◽  
Yasong Wu ◽  
Jiong Yang ◽  
Wencong Lu ◽  
Pierre Villars ◽  
...  

Abstract The Materials Genome Initiative requires the crossing of material calculations, machine learning, and experiments to accelerate the material development process. In recent years, data-based methods have been applied to the thermoelectric field, mostly on the transport properties. In this work, we combined data-driven machine learning and first-principles automated calculations into an active learning loop, in order to predict the p-type power factors (PFs) of diamond-like pnictides and chalcogenides. Our active learning loop contains two procedures (1) based on a high-throughput theoretical database, machine learning methods are employed to select potential candidates and (2) computational verification is applied to these candidates about their transport properties. The verification data will be added into the database to improve the extrapolation abilities of the machine learning models. Different strategies of selecting candidates have been tested, finally the Gradient Boosting Regression model of Query by Committee strategy has the highest extrapolation accuracy (the Pearson R = 0.95 on untrained systems). Based on the prediction from the machine learning models, binary pnictides, vacancy, and small atom-containing chalcogenides are predicted to have large PFs. The bonding analysis reveals that the alterations of anionic bonding networks due to small atoms are beneficial to the PFs in these compounds.


2018 ◽  
Vol 148 (24) ◽  
pp. 241718 ◽  
Author(s):  
Christopher R. Collins ◽  
Geoffrey J. Gordon ◽  
O. Anatole von Lilienfeld ◽  
David J. Yaron

2021 ◽  
Vol 2021 (3) ◽  
pp. 453-473
Author(s):  
Nathan Reitinger ◽  
Michelle L. Mazurek

Abstract With the aim of increasing online privacy, we present a novel, machine-learning based approach to blocking one of the three main ways website visitors are tracked online—canvas fingerprinting. Because the act of canvas fingerprinting uses, at its core, a JavaScript program, and because many of these programs are reused across the web, we are able to fit several machine learning models around a semantic representation of a potentially offending program, achieving accurate and robust classifiers. Our supervised learning approach is trained on a dataset we created by scraping roughly half a million websites using a custom Google Chrome extension storing information related to the canvas. Classification leverages our key insight that the images drawn by canvas fingerprinting programs have a facially distinct appearance, allowing us to manually classify files based on the images drawn; we take this approach one step further and train our classifiers not on the malleable images themselves, but on the more-difficult-to-change, underlying source code generating the images. As a result, ML-CB allows for more accurate tracker blocking.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1081
Author(s):  
Spyros Theocharides ◽  
Marios Theristis ◽  
George Makrides ◽  
Marios Kynigos ◽  
Chrysovalantis Spanias ◽  
...  

A main challenge for integrating the intermittent photovoltaic (PV) power generation remains the accuracy of day-ahead forecasts and the establishment of robust performing methods. The purpose of this work is to address these technological challenges by evaluating the day-ahead PV production forecasting performance of different machine learning models under different supervised learning regimes and minimal input features. Specifically, the day-ahead forecasting capability of Bayesian neural network (BNN), support vector regression (SVR), and regression tree (RT) models was investigated by employing the same dataset for training and performance verification, thus enabling a valid comparison. The training regime analysis demonstrated that the performance of the investigated models was strongly dependent on the timeframe of the train set, training data sequence, and application of irradiance condition filters. Furthermore, accurate results were obtained utilizing only the measured power output and other calculated parameters for training. Consequently, useful information is provided for establishing a robust day-ahead forecasting methodology that utilizes calculated input parameters and an optimal supervised learning approach. Finally, the obtained results demonstrated that the optimally constructed BNN outperformed all other machine learning models achieving forecasting accuracies lower than 5%.


2020 ◽  
Vol 1 ◽  
pp. 21-30
Author(s):  
N. El Dehaibi ◽  
E. F. MacDonald

AbstractAn important step when designers use machine learning models is annotating user generated content. In this study we investigate inter-rater reliability measures of qualitative annotations for supervised learning. We work with previously annotated product reviews from Amazon where phrases related to sustainability are highlighted. We measure inter-rater reliability of the annotations using four variations of Krippendorff's U-alpha. Based on the results we propose suggestions to designers on measuring reliability of qualitative annotations for machine learning datasets.


2017 ◽  
Vol 8 (7) ◽  
pp. 1351-1359 ◽  
Author(s):  
Nicholas J. Browning ◽  
Raghunathan Ramakrishnan ◽  
O. Anatole von Lilienfeld ◽  
Ursula Roethlisberger

Sign in / Sign up

Export Citation Format

Share Document