scholarly journals Smart paper transformer: new insight for enhanced catalytic efficiency and reusability of noble metal nanocatalysts

2020 ◽  
Vol 11 (11) ◽  
pp. 2915-2925 ◽  
Author(s):  
Qijie Jin ◽  
Lei Ma ◽  
Wan Zhou ◽  
Yuesong Shen ◽  
Olivia Fernandez-Delgado ◽  
...  

A smart paper transformer supported nanocatalyst platform is developed based on the facile phase conversion between paper and pulp for both high-efficiency and high-reusability catalysis, with wide applications demonstrated by using Au nanosponge.

Author(s):  
Yaru Li ◽  
Yu-Quan Zhu ◽  
Weili Xin ◽  
Song Hong ◽  
Xiaoying Zhao ◽  
...  

Rationally designing low-content and high-efficiency noble metal nanodots offers opportunities to enhance electrocatalytic performances for water splitting. However, the preparation of highly dispersed nanodots electrocatalysts remains a challenge. Herein, we...


Author(s):  
Cheng Wang ◽  
Hongyuan Shang ◽  
Hui Xu ◽  
Yukou Du

Non-noble-metal nanoboxes with abundant surface active sites, facilitated electron/mass transport, favorable synergistic effects and electronic effects, serving as promising candidate materials for boosting electrochemical water splitting.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 731
Author(s):  
Fátima Mirante ◽  
Ricardo F. Mendes ◽  
Filipe A. Almeida Paz ◽  
Salete S. Balula

An ionic lamellar coordination polymer based on a flexible triphosphonic acid linker, [Gd(H4nmp)(H2O)2]Cl2 H2O (1) (H6nmp stands for nitrilo(trimethylphosphonic) acid), presents high efficiency to remove sulfur and nitrogen pollutant compounds from model diesel. Its oxidative catalytic performance was investigated using single sulfur (1-BT, DBT, 4-MDBT and 4,6-DMDBT, 2350 ppm of S) and nitrogen (indole and quinolone, 400 ppm of N) model diesels and further, using multicomponent S/N model diesel. Different methodologies of preparation followed (microwave, one-pot, hydrothermal) originated small morphological differences that did not influenced the catalytic performance of catalyst. Complete desulfurization and denitrogenation were achieved after 2 h using single model diesels, an ionic liquid as extraction solvent ([BMIM]PF6) and H2O2 as oxidant. Simultaneous desulfurization and denitrogenation processes revealed that the nitrogen compounds are more easily removed from the diesel phase to the [BMIM]PF6 phase and consequently, faster oxidized than the sulfur compounds. The lamellar catalyst showed a high recycle capacity for desulfurization. The reusability of the diesel/H2O2/[BMIM]PF6 system catalyzed by lamellar catalyst was more efficient for denitrogenation than for desulfurization process using a multicomponent model diesel. This behavior is not associated with the catalyst performance but it is mainly due to the saturation of S/N compounds in the extraction phase.


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 22108-22117 ◽  
Author(s):  
Yufei Cao ◽  
Xiaoyang Li ◽  
Jiarong Xiong ◽  
Licheng Wang ◽  
Li-Tang Yan ◽  
...  

Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes.


2019 ◽  
Vol 7 (40) ◽  
pp. 23091-23097 ◽  
Author(s):  
Zhe Xue ◽  
Xinyu Zhang ◽  
Jiaqian Qin ◽  
Riping Liu

The development of high-activity and earth-abundant non-noble metal electrocatalysts for the oxygen evolution reaction (OER) is highly desirable but is an ongoing challenge facing us now.


2017 ◽  
Vol 114 (18) ◽  
pp. 4739-4744 ◽  
Author(s):  
Megan Mayerle ◽  
Madhura Raghavan ◽  
Sarah Ledoux ◽  
Argenta Price ◽  
Nicholas Stepankiw ◽  
...  

Pre-mRNA splicing is an essential step of eukaryotic gene expression that requires both high efficiency and high fidelity. Prp8 has long been considered the “master regulator” of the spliceosome, the molecular machine that executes pre-mRNA splicing. Cross-linking and structural studies place the RNaseH domain (RH) of Prp8 near the spliceosome’s catalytic core and demonstrate that prp8 alleles that map to a 17-aa extension in RH stabilize it in one of two mutually exclusive structures, the biological relevance of which are unknown. We performed an extensive characterization of prp8 alleles that map to this extension and, using in vitro and in vivo reporter assays, show they fall into two functional classes associated with the two structures: those that promote error-prone/efficient splicing and those that promote hyperaccurate/inefficient splicing. Identification of global locations of endogenous splice-site activation by lariat sequencing confirms the fidelity effects seen in our reporter assays. Furthermore, we show that error-prone/efficient RH alleles suppress a prp2 mutant deficient at promoting the first catalytic step of splicing, whereas hyperaccurate/inefficient RH alleles exhibit synthetic sickness. Together our data indicate that prp8 RH alleles link splicing fidelity with catalytic efficiency by biasing the relative stabilities of distinct spliceosome conformations. We hypothesize that the spliceosome “toggles” between such error-prone/efficient and hyperaccurate/inefficient conformations during the splicing cycle to regulate splicing fidelity.


2016 ◽  
Vol 22 (4) ◽  
pp. 343-353 ◽  
Author(s):  
Asuka Fukutome ◽  
Haruo Kawamoto ◽  
Shiro Saka

Gas-phase conversions of volatile intermediates from cellulose (AvicelPH-101) were studied using a two-stage experimental setup and compared with those of levoglucosan (1,6-anhydro-b-D-glucopyranose). Under N2or 7% O2/N2flow, vapors produced from the pyrolysis zone (500?C) degraded in the secondary reaction zone at 400,500, 600 or 900?C (residence time:0.8-1.4 s). The 69.3% (C-based) of levoglucosan was obtained at 400?C under N2flow along with 1,6-anhydro-b-D-glucofuranose (8.3 %, C-based), indicating that these anhydrosugars are the major volatile intermediates from cellulose pyrolysis. Levoglucosan and other volatiles started to fragment at 600?C, and cellulose was completely gasified at 900?C. Most gas/tar formations are explained by gas-phase reactions of levoglucosan reported previously, except for some minor reactions originating from the molten-phase pyrolysis, which produced benzene, furans and 1,6-anhydro-b-D-glucofuranose. Synergetic effects of O2and volatiles accelerated fragmentation and cellulose gasification was completed at 600?C, which reduced benzene and hydrocarbon gas productions. The molecular mechanisms including the action of O2as a biradical are discussed. These lines of information provide insights into the development of tar-free clean gasification that maintains high efficiency.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 955
Author(s):  
Lingxia Xu ◽  
Jianzhong Sun ◽  
Majjid A. Qaria ◽  
Lu Gao ◽  
Daochen Zhu

Dye decoloring peroxidases (DyPs) were named after their high efficiency to decolorize and degrade a wide range of dyes. DyPs are a type of heme peroxidase and are quite different from known heme peroxidases in terms of amino acid sequences, protein structure, catalytic residues, and physical and chemical properties. DyPs oxidize polycyclic dyes and phenolic compounds. Thus they find high application potentials in dealing with environmental problems. The structure and catalytic characteristics of DyPs of different families from the amino acid sequence, protein structure, and enzymatic properties, and analyzes the high-efficiency degradation ability of some DyPs in dye and lignin degradation, which vary greatly among DyPs classes. In addition, application prospects of DyPs in biomedicine and other fields are also discussed briefly. At the same time, the research strategy based on genetic engineering and synthetic biology in improving the stability and catalytic activity of DyPs are summarized along with the important industrial applications of DyPs and associated challenges. Moreover, according to the current research findings, bringing DyPs to the industrial level may require improving the catalytic efficiency of DyP, increasing production, and enhancing alkali resistance and toxicity.


Sign in / Sign up

Export Citation Format

Share Document