Nanoboxes endow non-noble-metal-based electrocatalysts with high efficiency for overall water splitting

Author(s):  
Cheng Wang ◽  
Hongyuan Shang ◽  
Hui Xu ◽  
Yukou Du

Non-noble-metal nanoboxes with abundant surface active sites, facilitated electron/mass transport, favorable synergistic effects and electronic effects, serving as promising candidate materials for boosting electrochemical water splitting.

Author(s):  
Yu Qi ◽  
Zhi Yang ◽  
Shuai Peng ◽  
Youcong Dong ◽  
Mingkui Wang ◽  
...  

The development of high-efficiency and durable non-noble metal-based oxygen evolution reaction (OER) electrocatalysts is a particularly urgent need for electrochemical water splitting. An effective electrocatalyst can be prepared by tailoring...


2020 ◽  
Vol 10 (18) ◽  
pp. 6266-6273
Author(s):  
Yalan Zhang ◽  
Zebin Yu ◽  
Ronghua Jiang ◽  
Jung Huang ◽  
Yanping Hou ◽  
...  

Excellent electrochemical water splitting with remarkable durability can provide a solution to satisfy the increasing global energy demand in which the electrode materials play an important role.


Author(s):  
Yaru Li ◽  
Yu-Quan Zhu ◽  
Weili Xin ◽  
Song Hong ◽  
Xiaoying Zhao ◽  
...  

Rationally designing low-content and high-efficiency noble metal nanodots offers opportunities to enhance electrocatalytic performances for water splitting. However, the preparation of highly dispersed nanodots electrocatalysts remains a challenge. Herein, we...


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


Author(s):  
Kaiyao Wu ◽  
Fei Chu ◽  
Yuying Meng ◽  
Kaveh Edalati ◽  
Qingsheng Gao ◽  
...  

Transition metal-based amorphous alloys have attracted increasing attention as precious-metal-free electrocatalysts for oxygen evolution reaction (OER) of water splitting due to their high macro-conductivity and abundant surface active sites. However,...


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhuofan Gan ◽  
Chengyong Shu ◽  
Chengwei Deng ◽  
Wei Du ◽  
Bo HUANG ◽  
...  

Electrochemical water splitting is promising method to generate pollution-free and sustainable hydrogen energy. However, the specific activity and durability of noble metal catalysts is the main hindrance to hydrogen evolution...


2020 ◽  
Author(s):  
Haimei Wang ◽  
Yuguo Xia ◽  
Haiping Li ◽  
Xiang Wang ◽  
Yuan Yu ◽  
...  

<div>The exploration of photoanode materials with high efficiency and stability is the </div><div>eternal pursuit for the realization of practically solar-driven photoelectrochemical </div><div>water splitting. Here we develop a novel deficient ternary metal sulfide (CdIn2S4) </div><div>as photoanode, and its PEC performance is significantly enhanced by introducing </div><div>surface S vacancies, achieving a photocurrent density of 5.73 mA cm-2 at 1.23 V vs. </div><div>RHE and 1 Sun and an applied bias photon-to-current efficiency of 2.49% at 0.477 </div><div>V vs. RHE, which, to the best of our knowledge, are the record-high values for a </div><div>single sulfide photon absorber to date. The experimental characterizations and </div><div>theoretical calculations highlight the enhanced effect of surface S vacancies on the </div><div>interfacial charge separation and transfer kinetics, and also demonstrate the </div><div>restrained surface states distribution and the transformation of active sites after </div><div>introducing surface S vacancies. This work may inspire more excellent work on </div><div>developing sulfide-based photoanodes. </div>


2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Ying ◽  
Huan Wang

Electrochemical water splitting involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is a greatly promising technology to generate sustainable and renewable energy resources, which relies on the exploration regarding the design of electrocatalysts with high efficiency, high stability, and low cost. Transition metal phosphides (TMPs), as nonprecious metallic electrocatalysts, have been extensively investigated and proved to be high-efficient electrocatalysts in both HER and OER. In this minireview, a general overview of recent progress in developing high-performance TMP electrocatalysts for electrochemical water splitting has been presented. Design strategies including composition engineering by element doping, hybridization, and tuning the molar ratio, structure engineering by porous structures, nanoarray structures, and amorphous structures, and surface/interface engineering by tuning surface wetting states, facet control, and novel substrate are summarized. Key scientific problems and prospective research directions are also briefly discussed.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3119
Author(s):  
Aniruddha Kundu ◽  
Akhmad Irhas Robby ◽  
Arnab Shit ◽  
Hyeong Jun Jo ◽  
Sung Young Park

Electrochemical water splitting is known as a potential approach for sustainable energy conversion; it produces H2 fuel by utilizing transition metal-based catalysts. We report a facile synthesis of FeCo2O4@carbon dots (CDs) nanoflowers supported on nickel foam through a hydrothermal technique in the absence of organic solvents and an inert environment. The synthesized material with a judicious choice of CDs shows superior performance in hydrogen and oxygen evolution reactions (HER and OER) compared to the FeCo2O4 electrode alone in alkaline media. For HER, the overpotential of 205 mV was able to produce current densities of up to 10 mA cm−2, whereas an overpotential of 393 mV was needed to obtain a current density of up to 50 mA cm−2 for OER. The synergistic effect between CDs and FeCo2O4 accounts for the excellent electrocatalytic activity, since CDs offer exposed active sites and subsequently promote the electrochemical reaction by enhancing the electron transfer processes. Hence, this procedure offers an effective approach for constructing metal oxide-integrated CDs as a catalytic support system to improve the performance of electrochemical water splitting.


2020 ◽  
Vol 8 (5) ◽  
pp. 2453-2462 ◽  
Author(s):  
Lulu Qiao ◽  
Anquan Zhu ◽  
Weixuan Zeng ◽  
Rui Dong ◽  
Pengfei Tan ◽  
...  

The electronic structure modification of metallic carbide is achieved by introducing dual-source transition metallic copper and cobalt atoms, thus contributing abundant active sites to afford decent water splitting performances.


Sign in / Sign up

Export Citation Format

Share Document