Compression-induced anti-nematic order in glassy and semicrystalline polymers

Soft Matter ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 102-106
Author(s):  
Sara Jabbari-Farouji ◽  
Damien Vandembroucq

The glassy and semicrystalline polymers under extension align with the tensile axis and exhibit a nematic order, whereas under compression polymers reorganize to lie in planes perpendicular to the compressive axis resulting in the emergence of a novel anti-nematic order.

Author(s):  
D. Caillard ◽  
J.L. Martin

The behaviour of the dislocation substructure during the steady stage regime of creep, as well as its contribution to the creep rate, are poorly known. In particular, the stability of the subboundaries has been questioned recently, on the basis of experimental observations |1||2| and theoretical estimates |1||3|. In situ deformation experiments in the high voltage electron microscope are well adapted to the direct observation of this behaviour. We report here recent results on dislocation and subboundary properties during stationary creep of an aluminium polycristal at 200°C.During a macroscopic creep test at 200°C, a cell substructure is developed with an average cell size of a few microns. Microsamples are cut out of these specimens |4| with the same tensile axis, and then further deformed in the microscope at the same temperature and stain rate. At 1 MeV, one or a few cells can be observed in the foil thickness |5|. Low electron fluxes and an image intensifier were used to reduce radiation damage effects.


Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


1989 ◽  
Vol 170 ◽  
Author(s):  
Benjamin S. Hsiao ◽  
J. H. Eric

AbstractTranscrystallization of semicrystalline polymers, such as PEEK, PEKK and PPS, in high performance composites has been investigated. It is found that PPDT aramid fiber and pitch-based carbon fiber induce a transcrystalline interphase in all three polymers, whereas in PAN-based carbon fiber and glass fiber systems, transcrystallization occurs only under specific circumstances. Epitaxy is used to explain the surface-induced transcrystalline interphase in the first case. In the latter case, transcrystallization is probably not due to epitaxy, but may be attributed to the thermal conductivity mismatch. Plasma treatment on the fiber surface showed a negligible effect on inducing transcrystallization, implying that surface-free energy was not important. A microdebonding test was adopted to evaluate the interfacial strength between the fiber and matrix. Our preliminary results did not reveal any effect on the fiber/matrix interfacial strength of transcrystallinity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takuya Ohzono ◽  
Kaoru Katoh ◽  
Hiroyuki Minamikawa ◽  
Mohand O. Saed ◽  
Eugene M. Terentjev

AbstractNematic liquid crystal elastomers (N-LCE) exhibit intriguing mechanical properties, such as reversible actuation and soft elasticity, which manifests as a wide plateau of low nearly-constant stress upon stretching. N-LCE also have a characteristically slow stress relaxation, which sometimes prevents their shape recovery. To understand how the inherent nematic order retards and arrests the equilibration, here we examine hysteretic stress-strain characteristics in a series of specifically designed main-chain N-LCE, investigating both macroscopic mechanical properties and the microscopic nematic director distribution under applied strains. The hysteretic features are attributed to the dynamics of thermodynamically unfavoured hairpins, the sharp folds on anisotropic polymer strands, the creation and transition of which are restricted by the nematic order. These findings provide a new avenue for tuning the hysteretic nature of N-LCE at both macro- and microscopic levels via different designs of polymer networks, toward materials with highly nonlinear mechanical properties and shape-memory applications.


Sign in / Sign up

Export Citation Format

Share Document