average cell size
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 24)

H-INDEX

16
(FIVE YEARS 3)

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6605
Author(s):  
Stanislaw Siatkowski ◽  
Krzysztof Wacko ◽  
Jan Kindracki

Interest in alternative and renewable energy sources has risen significantly in recent years. Biogas is a prime example of a promising, alternative fuel that might be a possible replacement for fossil fuels. It is a mixture consisting mainly of CH4 and CO2 with various additions. Biogas is easily storable and as such is a more reliable and stable source of energy than solar and wind sources, which suffer from unreliability due to their dependence on weather conditions. In this paper, the authors report experimental results of detonation of a biogas-oxygen mixture. The composition of the biogas was 70% CH4 + 30% CO2 and the experiments were carried out for a range of equivalence ratios (Φ = 0.5 ÷ 1.5) and initial pressures (0.6 ÷ 1.6 bar). The aim of the research was to analyze the cellular structure of detonation. The soot foil technique was used to determine the width of the detonation cells (λ). The conducted experiments and subsequent analysis of the detonation cell size confirm that both the increase in the initial pressure of the mixture or move away from stoichiometric (Φ = 1) composition is accompanied by a decrease in the width of the detonation cell. The authors also argue that due to the unstable cellular structure of the detonation, it is insufficient to report only the average cell size. Instead, the researchers propose more detailed statistical description assured values.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3143
Author(s):  
Mercedes Santiago-Calvo ◽  
Haneen Naji ◽  
Victoria Bernardo ◽  
Judith Martín-de León ◽  
Alberto Saiani ◽  
...  

A series of thermoplastic polyurethanes (TPUs) with different amounts of hard segments (HS) (40, 50 and 60 wt.%) are synthesized by a pre-polymer method. These synthesized TPUs are characterized by Shore hardness, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), dynamic mechanical thermal analysis (DMTA), and rheology. Then, these materials are foamed by a one-step gas dissolution foaming process and the processing window that allows producing homogeneous foams is analyzed. The effect of foaming temperature from 140 to 180 °C on the cellular structure and on density is evaluated, fixing a saturation pressure of 20 MPa and a saturation time of 1 h. Among the TPUs studied, only that with 50 wt.% HS allows obtaining a stable foam, whose better features are reached after foaming at 170 °C. Finally, the foaming of TPU with 50 wt.% HS is optimized by varying the saturation pressure from 10 to 25 MPa at 170 °C. The optimum saturation and foaming conditions are 25 MPa and 170 °C for 1 h, which gives foams with the lowest relative density of 0.74, the smallest average cell size of 4 μm, and the higher cell nucleation density of 8.0 × 109 nuclei/cm3. As a final conclusion of this investigation, the TPU with 50 wt.% HS is the only one that can be foamed under the saturation and foaming conditions used in this study. TPU foams containing 50 wt.% HS with a cell size below 15 microns and porosity of 1.4–18.6% can be obtained using foaming temperatures from 140 to 180 °C, saturation pressure of 20 MPa, and saturation time of 1 h. Varying the saturation pressure from 10 to 25 MPa and fixing the foaming temperature of 170 °C and saturation pressure of 1 h results in TPU foams with a cell size of below 37 microns and porosity of 1.7–21.2%.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5351
Author(s):  
Agnė Kairytė ◽  
Sylwia Członka ◽  
Renata Boris ◽  
Sigitas Vėjelis

The study analyses rigid polyurethane (PUR) foam modified with 10–30 wt.% sunflower press cake (SFP) and liquid glass-impregnated sunflower press cake (LG-SFP) particles and their impact on performance characteristics of PUR foams—foaming behaviour, rheology, thermal conductivity, compressive strength parallel and perpendicular to the foaming directions, tensile strength, dimensional stability, short-term water absorption by partial immersion, and thermal stability. Even though the dynamic viscosity and apparent density were increased for SFP and LG-SFP formulations, thermal conductivity values improved by 17% and 10%, respectively, when 30 wt.% of particles were incorporated. The addition of SFP and LG-SFP particles resulted in the formation of more structurally and dimensionally stable PUR foams with a smaller average cell size and a greater content of closed cells. At 30 wt.% of SFP and LG-SFP particles, compressive strength increased by 114% and 46% in the perpendicular direction, respectively, and by 71% and 67% in the parallel direction, respectively, while tensile strength showed an 89% and 85% higher performance at 30 wt.% SFP and LG-SFP particles loading. Furthermore, short-term water absorption for all SFP and LG-SFP modified PUR foam formulations was almost two times lower compared to the control foam. SFP particles reduced the thermal stability of modified PUR foams, but LG-SFP particles shifted the thermal decomposition temperatures towards higher ones.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2416
Author(s):  
Teijo Rokkonen ◽  
Pia Willberg-Keyriläinen ◽  
Jarmo Ropponen ◽  
Tero Malm

Polymer foams are widely used in several fields such as thermal insulation, acoustics, automotive, and packaging. The most widely used polymer foams are made of polyurethane, polystyrene, and polyethylene but environmental awareness is boosting interest towards alternative bio-based materials. In this study, the suitability of bio-based thermoplastic cellulose palmitate for extrusion foaming was studied. Isobutane, carbon dioxide (CO2), and nitrogen (N2) were tested as blowing agents in different concentrations. Each of them enabled cellulose palmitate foam formation. Isobutane foams exhibited the lowest density with the largest average cell size and nitrogen foams indicated most uniform cell morphology. The effect of die temperature on foamability was further studied with isobutane (3 wt%) as a blowing agent. Die temperature had a relatively low impact on foam density and the differences were mainly encountered with regard to surface quality and cell size distribution. This study demonstrates that cellulose palmitate can be foamed but to produce foams with greater quality, the material homogeneity needs to be improved and researched further.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2813
Author(s):  
Georg Hasemann ◽  
Ulf Betke ◽  
Manja Krüger ◽  
Heike Walles ◽  
Michael Scheffler

Ceramics are widely used as implant materials; however, they are brittle and may emit particles when used in these applications. To overcome this disadvantage, alumina foams, which represent a 3D cellular structure comparable to that of human trabecular bone structures, were sputter coated with platinum, tantalum or titanium and modified with fibronectin or collagen type I, components of the extracellular matrix (ECM). To proof the cell material interaction, the unmodified and modified materials were cultured with (a) mesenchymal stem cells being a perfect indicator for biocompatibility and releasing important cytokines of the stem cell niche and (b) with fibroblasts characterized as mediators of inflammation and therefore an important cellular component of the foreign body reaction and inflammation after implantation. To optimize and compare the influence of metal surfaces on cellular behavior, planar glass substrates have been used. Identified biocompatible metal surface of platinum, titanium and tantalum were sputtered on ceramic foams modified with the above-mentioned ECM components to investigate cellular behavior in a 3D environment. The cellular alumina support was characterized with respect to its cellular/porous structure and niche accessibility and coating thickness of the refractory metals; the average cell size was 2.3 mm, the average size of the cell windows was 1.8 mm, and the total foam porosity was 91.4%. The Pt, Ti and Ta coatings were completely dense covering the entire alumina foam surface. The metals titanium and tantalum were colonized very well by the stem cells without a coating of ECM components, whereas the fibroblasts preferred components of the ECM on the alumina foam surface.


2021 ◽  
pp. 026248932110188
Author(s):  
Yao Dou ◽  
Denis Rodrigue

In this work, polypropylene (PP) was foamed via rotational molding using a chemical blowing agent (CBA) based on azodicarbonamide over a range of concentration (0 to 0.5% wt.). The samples were then analyzed in terms of morphological, thermal and mechanical properties. The morphological analysis showed a continuous increase in the average cell size and cell density with increasing CBA content. Increasing the CBA content also led to lower foam density and thermal conductivity. Similarly, all the mechanical properties (tension, flexion and impact) were found to decrease with increasing CBA content. Finally, the efficiency of the rotomolding process was assessed by producing neat PP samples via compression molding. The results showed negligible differences between the rotomolded and compression molded properties at low deformation and rate of deformation indicating that optimal rotomolding conditions were selected.


2021 ◽  
pp. 0021955X2110094
Author(s):  
Rupesh Dugad ◽  
G Radhakrishna ◽  
Abhishek Gandhi

The lightweight products with superior specific strength are in great demand in numerous applications such as automotive, aerospace, biomedical, sports, etc. This work focussed on the manufacturing of lightweight products using the cellular three dimensional (3D) printing process. In this work, the continuous microcellular morphology has been developed in a single foamed filament using 3 D printing of carbon-di-oxide (CO2) saturated acrylonitrile butadiene styrene (ABS) filaments. The microcellular structures with average cell size in the range of 6–1040 µm were developed. The influence of printing parameters; nozzle temperature, feed rate, and flow rate on the foam characteristics and cell morphology at different levels were investigated. The different kinds of observed foamed extrudate irregularities were discussed.


2021 ◽  
pp. 0021955X2110137
Author(s):  
Yao Dou ◽  
Denis Rodrigue

In this study, foamed recycled high density polyethylene (rHDPE) parts were produced by rotational molding using different concentration (0 to 1% wt.) of a chemical blowing agent (CBA) based on azodicarbonamide. From the samples produced, a complete morphological, thermal and mechanical characterization was performed. The morphological analysis showed a gradual increase in the average cell size, while the cell density firstly increased and then decreased with increasing CBA content. As expected, increasing the CBA content decreased the foam density as well as the thermal conductivity. Although increasing the CBA content decreased both tensile and flexural properties, the impact strength showed a similar trend as the cell density with an optimum CBA content around 0.1% wt. Finally, neat rHDPE samples were also produced by compression molding. The results showed negligible differences between the rotomolded and compression molded properties indicating that optimal rotomolding conditions were selected. These results confirm the possibility of using 100% recycled polymers to produce rotomolded foam parts.


2021 ◽  
pp. 026248932110068
Author(s):  
Youming Chen ◽  
Raj Das ◽  
Hui Wang ◽  
Mark Battley

In this study, the microstructure of a SAN foam was imaged using a micro-CT scanner. Through image processing and analysis, variations in density, cell wall thickness and cell size in the foam were quantitatively explored. It is found that cells in the foam are not elongated in the thickness (or rise) direction of foam sheets, but rather equiaxed. Cell walls in the foam are significantly straight. Density, cell size and cell wall thickness all vary along the thickness direction of foam sheets. The low density in the vicinity of one face of foam sheets leads to low compressive stiffness and strength, resulting in the strain localization observed in our previous compressive tests. For M80, large open cells on the top face of foam sheets are likely to buckle in compressive tests, therefore being another potential contributor to the strain localization as well. The average cell wall thickness measured from 2D slice images is around 1.4 times that measured from 3D images, and the average cell size measured from 2D slice images is about 13.8% smaller than that measured from 3D images. The dispersions of cell wall thickness measured from 2D slice images are 1.16–1.20 times those measured from 3D images. The dispersions of cell size measured from 2D slice images are 1.12–1.36 times those measured from 3D images.


2021 ◽  
pp. 0021955X2098715
Author(s):  
Cosimo Brondi ◽  
Ernesto Di Maio ◽  
Luigi Bertucelli ◽  
Vanni Parenti ◽  
Thomas Mosciatti

This study investigates the effect of liquid-type organofluorine additives (OFAs) on the morphology, thermal conductivity and mechanical properties of rigid polyurethane (PU) and polyisocyanurate (PIR) foams. Foams were characterized in terms of their morphology (density, average cell size, anisotropy ratio, open cell content), thermal conductivity and compressive as well as flexural properties. Based on the results, we observed that OFAs efficiently reduced the average cell size of both PU and PIR foams, leading to improved thermal insulating and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document