Surface-engineered mesoporous Pt nanodendrites with Ni dopant for highly enhanced catalytic performance in hydrogen evolution reaction

2019 ◽  
Vol 7 (20) ◽  
pp. 12800-12807 ◽  
Author(s):  
Lu Li ◽  
Shan Wang ◽  
Laifei Xiong ◽  
Bin Wang ◽  
Guang Yang ◽  
...  

Hydrogen production by electrolyzing water is expected to be one of the most effective strategies to realize the comprehensive utilization of clean energy and thus alleviate the growing environmental problems.

2020 ◽  
Vol 10 (20) ◽  
pp. 6902-6909
Author(s):  
Karthika Pichaimuthu ◽  
Anirudha Jena ◽  
Ho Chang ◽  
Chaochin Su ◽  
Ru-Shi Liu

The production of hydrogen using solar energy via a photoelectrochemical system is an effective technique for meeting present clean energy needs.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 689
Author(s):  
Prasanta Kumar Sahoo ◽  
Soubhagya Ranjan Bisoi ◽  
Yi-June Huang ◽  
Dung-Sheng Tsai ◽  
Chuan-Pei Lee

The production of hydrogen via the water splitting process is one of the most promising technologies for future clean energy requirements, and one of the best related challenges is the choice of the most highly efficient and cost effective electrocatalyst. Conventional electrocatalysts based on precious metals are rare and very-expensive for large-scale production of hydrogen, demanding the exploration for low-cost earth abundant alternatives. In this context, extensive works from both theoretical and experimental investigations have shown that two-dimensional (2D) layered materials have gained considerable attention as highly effective electrocatalytic materials for electrical-driven hydrogen production because of their unique layered structure and exciting electrical properties. This review highlights recent advancements on 2D layered materials, including graphene, transitional metal dichalcogenides (TMDs), layered double hydroxides (LDHs), MXene, and graphitic carbon nitride (g-C3N4) as cost-effective and highly efficient electrocatalysts for hydrogen production. In addition, some fundamental aspects of the hydrogen evolution reaction (HER) process and a wide ranging overview on several strategies to design and synthesize 2D layered material as HER electrocatalysts for commercial applications are introduced. Finally, the conclusion and futuristic prospects and challenges of the advancement of 2D layered materials as non-precious HER electrocatalysts are briefly discussed.


2020 ◽  
Vol 8 (45) ◽  
pp. 23674-23698
Author(s):  
Tianhao Li ◽  
Tao Hu ◽  
Liming Dai ◽  
Chang Ming Li

Hydrogen production as very attractive clean energy technology has sparked the accelerated development of catalysts for the hydrogen evolution reaction (HER) towards efficient photo- and electrolytic water splitting.


Nanoscale ◽  
2021 ◽  
Author(s):  
Xianyun Peng ◽  
Junrong Hou ◽  
Yuying Mi ◽  
Jiaqiang Sun ◽  
Gaocan Qi ◽  
...  

Electrocatalytic hydrogen evolution reaction (HER) for H2 production is essential for future renewable and clean energy technology. Screening energy-saving, low-cost, and highly active catalysts efficiently, however, is still a grand...


RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12470-12475
Author(s):  
Xinmei Liu ◽  
Chen Liang ◽  
Wenlong Yang ◽  
Chunyang Yang ◽  
Jiaqi Lin ◽  
...  

An effective approach to achieve the low cost and high stability of electro-catalysts for HER.


Author(s):  
Xuejun Zhai ◽  
Qingping Yu ◽  
Guishan Liu ◽  
Junlu Bi ◽  
Yu Zhang ◽  
...  

Hydrogen evolution reaction (HER) based on water electrolysis is promising for renewable hydrogen production. Limited by sluggish anodic oxygen evolution reaction (OER), rational fabrication of efficient catalyst for HER coupled...


RSC Advances ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 5480-5487 ◽  
Author(s):  
Jung Eun Lee ◽  
Jaemin Jung ◽  
Taeg Yeoung Ko ◽  
Sujin Kim ◽  
Seong-Il Kim ◽  
...  

GO content tuning gradually enhanced the HER catalytic performance of the MoS2/rGO hybrids, decreasing the Tafel slope from 82 to 48 mV per decade owing to an increase of catalytically active areas and an electronic transition of MoS2.


Nanoscale ◽  
2017 ◽  
Vol 9 (41) ◽  
pp. 15895-15900 ◽  
Author(s):  
Haiqing Wang ◽  
Xiaobin Xu ◽  
Bing Ni ◽  
Haoyi Li ◽  
Wei Bian ◽  
...  

3D hierarchical architectures assembled from ultrafine MoC nanoparticles (0D) confined in N-doped conductive carbon nanosheets (2D) exhibit remarkable electrocatalytic performance and stability for the hydrogen evolution reaction (HER).


Sign in / Sign up

Export Citation Format

Share Document