High-efficiency photo-oxidation of thioethers over C60@PCN-222 under air

2019 ◽  
Vol 7 (38) ◽  
pp. 22084-22091 ◽  
Author(s):  
Deng-Yue Zheng ◽  
En-Xuan Chen ◽  
Chun-Rong Ye ◽  
Xiao-Chun Huang

For the first time, fullerene (C60) was used to enhance the photogenerated electron–hole separation of MOFs as a catalyst and showed high catalytic activity in the photocatalytic oxidation of thioether in air.

RSC Advances ◽  
2019 ◽  
Vol 9 (26) ◽  
pp. 15033-15041 ◽  
Author(s):  
Ya Gao ◽  
Yongjie Zheng ◽  
Jixing Chai ◽  
Jingzhi Tian ◽  
Tao Jing ◽  
...  

Effective separation and rapid transfer of photogenerated electron–hole pairs are key features of photocatalytic materials with high catalytic activity, which could be achieved by co-catalysts.


2019 ◽  
Vol 21 (40) ◽  
pp. 22598-22610 ◽  
Author(s):  
Nan Zhang ◽  
Fuyi Chen ◽  
Longfei Guo

We demonstrate for the first time that the Pd1Ag single-atom alloys exhibit a high catalytic activity for formate oxidation reaction.


2013 ◽  
Vol 91 (4) ◽  
pp. 292-299 ◽  
Author(s):  
Bayardo E. Velasco ◽  
Gustavo López-Téllez ◽  
Nelly González-Rivas ◽  
Iván García-Orozco ◽  
Erick Cuevas-Yañez

Diverse dithioic acid copper complexes exhibit a high catalytic activity in the copper-catalyzed alkyne–azide cycloaddition using several solvents under different temperatures, showing a high efficiency with only 0.005 mmol catalyst/mmol alkyne or less. A dithioic acid copper complex derived from acetophenone was selected and used as the catalyst in the preparation of a library of 1,4-disubstituted-1,2,3-triazoles. This process occurred in high yields and good functional group tolerance.


RSC Advances ◽  
2015 ◽  
Vol 5 (96) ◽  
pp. 78441-78447 ◽  
Author(s):  
Phan Huy Hoang ◽  
Bach Nguyen Xuan

The magnetically recyclable ZSM-5 zeolite (MZZ) with high catalytic activity, high efficiency in separation, recycling and long lifetime for epoxide isomerization reaction was presented.


2021 ◽  
Author(s):  
Jianguo liu ◽  
Jiangmin Sun ◽  
Longlong Ma

The development of high efficiency, excellent selectivity, and super activity metal catalyst for chemical selective hydrogenation of alkynes to olefin is of great significance in the field of the chemical industry. At the same time, the development of a large number of available base metal catalysts for organic conversion remains an important objective of chemical research. Herein, we report a facile preparation of a simple, high catalytic activity, environmentally friendly, and inexpensive biomass carbon material supported nano-nickel catalyst from lignin residue. The entire preparation process of the catalyst is simple, reliable, economical, and environmentally friendly, which provides a potential utilization prospect for large-scale industrial applications of biomass-based carbon material catalysts. Biomass-based lignin residues can not only reduce the high oxidation state of nickel ions into nickel nanoparticles by the in-situ reducing gas generated during the calcination process, but the mesoporous structure of lignin residue also promotes the adsorption of nickel metal, which greatly improved the catalytic activity of biomass-based Ni-based catalysts. The simple synthetic green, cost-effective and sustainable biomass-based Ni-based catalyst shows good performance in the selective hydrogenation of phenylacetylene, reaching 97.2% conversion and 84.3% styrene selectivity, respectively.


2021 ◽  
Author(s):  
Xiaojun Dai ◽  
sheng feng ◽  
Wei Wu ◽  
Yun Zhou ◽  
Zhiwei Ye ◽  
...  

Abstract In this paper, in order to improved the photocatalytic activity of Bi2WO6, Bi2WO6 and ZIF-8 were successfully combined by in-situ growth method for the first time. The addition of ZIF-8 effectively inhibited the recombination of photogenerated electron hole pairs and further improved the electron utilization efficiency, and superoxide anion was introduced to greatly improve the photocatalytic activity. The performance of Bi2WO6/ZIF-8 in the photodegradation of tetracycline (TC) was studied under different conditions of proportions of ZIF-8, dosage of catalyst and concentration of TC. The results indicated that B/Z/5/1 (10mg) had the best photocatalytic activity, and 97.8% of TC (20mg/L) could be degraded in 80 minutes under UV light, the rate constant (k) for TC degradation was almost 3 times that of Bi2WO6. The effects of pH, HA and inorganic anions on the degradation of TC were studied in simulated real water. Further, B/Z/5/1 could be reutilized up to five cycles without reduction of efficiency and catalysis performance. Therefore, Bi2WO6/ZIF-8 heterojunction composite material can be utilized as an efficient photocatalyst for remediation of environmental pollution.


2019 ◽  
Vol 55 (29) ◽  
pp. 4218-4221 ◽  
Author(s):  
Lingxi Zhou ◽  
Meichen Guo ◽  
Yao Li ◽  
Qin Gu ◽  
Wenqian Zhang ◽  
...  

A series of wire-in-plate nanostructured electrocatalysts for OER with high catalytic activity were fabricated.


2005 ◽  
Vol 58 (7) ◽  
pp. 507 ◽  
Author(s):  
Xueguang Wang ◽  
Soofin Cheng

Highly ordered large-pore SBA-15 materials functionalized with a high loading of amino groups were synthesized for the first time by co-condensation of tetraethyl orthosilicate (TEOS) and [3-(methylamino)propyl]trimethoxysilane (MAPTMS) using an amphiphilic block copolymer. Addition of inorganic salt to the initial mixture greatly enhanced the mesostructure ordering and stability of the mesoporous materials. The materials thus obtained showed high catalytic activity and selectivity for the synthesis of flavanones by means of the Claisen–Schmidt condensation in the absence of solvent.


Author(s):  
Libo Deng ◽  
Xiujuan Li ◽  
Yuanyuan Chen ◽  
Weijie Liao ◽  
Lei Qiu ◽  
...  

Single atom catalysts (SACs) stabilized by nitrogen in a carbon support and having maximized atom utilization efficiency and an unsaturated environment exhibit high catalytic activity and selectivity. Incorporating nitrogen into...


Sign in / Sign up

Export Citation Format

Share Document