Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction

2019 ◽  
Vol 7 (46) ◽  
pp. 26231-26237 ◽  
Author(s):  
Fuping Pan ◽  
Hanguang Zhang ◽  
Zhenyu Liu ◽  
David Cullen ◽  
Kexi Liu ◽  
...  

Active sites of single-atom nickel catalysts for CO2 reduction were revealed to be edge-located Ni–N2+2 sites with dangling bond-containing carbon atoms, which facilitate the dissociation of the C–O bond of *COOH intermediate.

Author(s):  
Danni Zhou ◽  
Xinyuan Li ◽  
Huishan Shang ◽  
Fengjuan Qin ◽  
Wenxing Chen

Metal-organic framework (MOF) derived single-atom catalysts (SACs), featured unique active sites and adjustable topological structures, exhibit high electrocatalytic performance on carbon dioxide reduction reactions (CO2RR). By modulating elements and atomic...


2020 ◽  
Vol 3 (9) ◽  
pp. 8739-8745
Author(s):  
Syed Asad Abbas ◽  
Jun Tae Song ◽  
Ying Chuan Tan ◽  
Ki Min Nam ◽  
Jihun Oh ◽  
...  

Author(s):  
Chenbao Lu ◽  
Kaiyue Jiang ◽  
Diana Tranca ◽  
Ning Wang ◽  
Hui Zhu ◽  
...  

Single-atom catalysts (SACs) have been rapidly rising as emerging materials in the field of energy conversion, especially for CO2 reduction reaction. However, the selectivity and running current are still beyond...


2021 ◽  
Author(s):  
Qingyun Qu ◽  
Shufang Ji ◽  
Yuanjun Chen ◽  
Dingsheng Wang ◽  
Yadong Li

Electrochemical CO2 reduction reaction (CO2RR) is viewed as a promising way to remove the greenhouse gas CO2 from atmosphere and convert them to useful industrial products like methane, methanol, formate,...


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 482
Author(s):  
Hilmar Guzmán ◽  
Federica Zammillo ◽  
Daniela Roldán ◽  
Camilla Galletti ◽  
Nunzio Russo ◽  
...  

Electrochemical CO2 reduction is a promising carbon capture and utilisation technology. Herein, a continuous flow gas diffusion electrode (GDE)-cell configuration has been studied to convert CO2 via electrochemical reduction under atmospheric conditions. To this purpose, Cu-based electrocatalysts immobilised on a porous and conductive GDE have been tested. Many system variables have been evaluated to find the most promising conditions able to lead to increased production of CO2 reduction liquid products, specifically: applied potentials, catalyst loading, Nafion content, KHCO3 electrolyte concentration, and the presence of metal oxides, like ZnO or/and Al2O3. In particular, the CO productivity increased at the lowest Nafion content of 15%, leading to syngas with an H2/CO ratio of ~1. Meanwhile, at the highest Nafion content (45%), C2+ products formation has been increased, and the CO selectivity has been decreased by 80%. The reported results revealed that the liquid crossover through the GDE highly impacts CO2 diffusion to the catalyst active sites, thus reducing the CO2 conversion efficiency. Through mathematical modelling, it has been confirmed that the increase of the local pH, coupled to the electrode-wetting, promotes the formation of bicarbonate species that deactivate the catalysts surface, hindering the mechanisms for the C2+ liquid products generation. These results want to shine the spotlight on kinetics and transport limitations, shifting the focus from catalytic activity of materials to other involved factors.


2021 ◽  
Author(s):  
Hai-Long Jiang ◽  
Yan Zhang ◽  
Long Jiao ◽  
Weijie Yang ◽  
Chenfan Xie
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanming Cai ◽  
Jiaju Fu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Qianhao Min ◽  
...  

AbstractSingle-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Shi ◽  
Zhi-Rui Ma ◽  
Yi-Ying Xiao ◽  
Yun-Chao Yin ◽  
Wen-Mao Huang ◽  
...  

AbstractTuning metal–support interaction has been considered as an effective approach to modulate the electronic structure and catalytic activity of supported metal catalysts. At the atomic level, the understanding of the structure–activity relationship still remains obscure in heterogeneous catalysis, such as the conversion of water (alkaline) or hydronium ions (acid) to hydrogen (hydrogen evolution reaction, HER). Here, we reveal that the fine control over the oxidation states of single-atom Pt catalysts through electronic metal–support interaction significantly modulates the catalytic activities in either acidic or alkaline HER. Combined with detailed spectroscopic and electrochemical characterizations, the structure–activity relationship is established by correlating the acidic/alkaline HER activity with the average oxidation state of single-atom Pt and the Pt–H/Pt–OH interaction. This study sheds light on the atomic-level mechanistic understanding of acidic and alkaline HER, and further provides guidelines for the rational design of high-performance single-atom catalysts.


Sign in / Sign up

Export Citation Format

Share Document