Anti-freezing and moisturizing conductive hydrogels for strain sensing and moist-electric generation applications

2020 ◽  
Vol 8 (6) ◽  
pp. 3109-3118 ◽  
Author(s):  
Peng He ◽  
Junying Wu ◽  
Xiaofeng Pan ◽  
Lihui Chen ◽  
Kai Liu ◽  
...  

An anti-freezing and moisturizing conductive hydrogel, capable of harvesting energy from moisture, was developed by incorporating tannic acid and carbon nanotubes into polyvinyl alcohol containing a water–glycerol dispersion.

2021 ◽  
Vol 45 (1) ◽  
pp. 208-216
Author(s):  
Zhonghua Zhao ◽  
Xiang Yuan ◽  
Yicheng Huang ◽  
Jikui Wang

Conductive hydrogels are promising flexible conductors for human motion monitoring.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Waris Obitayo ◽  
Tao Liu

The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 391-397
Author(s):  
Tao Liu ◽  
Ripeng Zhang ◽  
Jianzhi Liu ◽  
Ling Zhao ◽  
Yueqin Yu

Abstract Highly stretched and conductive hydrogels, especially synthetized from natural polymers, are beneficial for highly stretched electronic equipment which is applied in extreme environment. We designed and prepared robust and tough alginate hydrogels (GMA-SA-PAM) using the ingenious strategy of fully interpenetrating cross-linking, in which the glycidyl methacrylate (GMA) was used to modify sodium alginate (SA) and then copolymerized with acrylamide (AM) and methylenebisacrylamide (BIS) as cross-linkers. The complete cross-linked structures can averagely dissipate energy and the polymer structures can maintain hydrogels that are three-dimensional to greatly improve the mechanical performance of hydrogels. The GMA-SA-PAM hydrogels display ultra-stretchable (strain up to ∼407% of tensile strain) and highly compressible (∼57% of compression strain) properties. In addition, soaking the GMA-SA-PAM hydrogel in 5 wt% NaCl solution also endows the conductivity of the hydrogel (this hydrogel was named as GSP-Na) with excellent conductive properties (5.26 S m−1). The GSP-Na hydrogel with high stability, durability, as well as wide range extent sensor is also demonstrated by researching the electrochemical signals and showing the potential for applications in wearable and quickly responded electronics.


Author(s):  
Zexing Deng ◽  
Rui Yu ◽  
Baolin Guo

Stimuli-responsive conductive hydrogel has been emerged as a new surging concept in hydrogel research field due to its combined advantages of stimuli-responsivity and conductivity from conductive polymers (such as polyaniline,...


Sign in / Sign up

Export Citation Format

Share Document