A thieno[3,4-b]pyrazine-based A2–A1–D–A1–A2 type low bandgap non-fullerene acceptor with 1,1-dicyanomethylene-3-indanone (IC) as the terminal group

2019 ◽  
Vol 7 (29) ◽  
pp. 8820-8824 ◽  
Author(s):  
Jianfeng Li ◽  
You Chen ◽  
Xiaochen Wang ◽  
Feng Li ◽  
Ailing Tang ◽  
...  

As the most successful end-capped unit in conventional A–D–A type non-fullerene acceptors (NFAs), 1,1-dicyanomethylene-3-indanone (IC) plays a significant role in enhancing the power conversion efficiencies (PCEs) of organic solar cells (OSCs).

2018 ◽  
Vol 6 (47) ◽  
pp. 24210-24215 ◽  
Author(s):  
Peiyao Xue ◽  
Yiqun Xiao ◽  
Tengfei Li ◽  
Shuixing Dai ◽  
Boyu Jia ◽  
...  

Panchromatic ternary organic solar cells with photoresponses beyond 1000 nm and power conversion efficiencies as high as 12.1% were fabricated using low-bandgap polymer PTB7-Th as a donor and ultra low-bandgap F8IC and mid-bandgap IDT-2BR as nonfullerene acceptors.


Author(s):  
Shreyam Chatterjee ◽  
Seihou JINNAI ◽  
Yutaka Ie

Progressive advancement of remarkably high power conversion efficiencies (PCEs) of organic solar cells (OSCs) largely depends on the development of norfullerene acceptors (NFAs), revealing stupendous ability of OSCs to shift...


Nanoscale ◽  
2021 ◽  
Author(s):  
Congcong Zhao ◽  
Jiuxing Wang ◽  
Xuanyi Zhao ◽  
Zhonglin Du ◽  
Renqiang Yang ◽  
...  

The past decade has seen a tremendous development of organic solar cells (OSCs). To date, the high-performance OSCs have boosted the power conversion efficiencies (PCEs) over 17%, showing bright prospects...


2021 ◽  
Author(s):  
Haifen Liu ◽  
Zixuan Zhu ◽  
Huafeng Li ◽  
Weili Fan ◽  
Kaihua Ning ◽  
...  

Non-fullerene acceptors have received a great deal of attention over the past several years, and numerous modifications on the molecular structures significantly boosted the power conversion efficiencies (PCEs). To be...


2021 ◽  
Author(s):  
Zhaofan Yang ◽  
Shijie Liang ◽  
Baiqiao Liu ◽  
Jing Wang ◽  
Fan Yang ◽  
...  

Single-component organic solar cells (SCOSCs) have been recognized as the promising photovoltaic technology due to the excellent stability, but their power conversion efficiencies (PCEs) are far lagging their bulk-heterojunction counterparts....


2019 ◽  
Vol 43 (26) ◽  
pp. 10442-10448 ◽  
Author(s):  
Sergey V. Dayneko ◽  
Arthur D. Hendsbee ◽  
Jonathan R. Cann ◽  
Clément Cabanetos ◽  
Gregory C. Welch

The addition of donor or acceptor type molecular semiconductors to PBDB-T:PC60BM based organic photovoltaics leads to increases in open circuit-voltages and overall power conversion efficiencies.


2019 ◽  
Vol 01 (01) ◽  
pp. 030-037 ◽  
Author(s):  
Jianyun Zhang ◽  
Wenrui Liu ◽  
Shengjie Xu ◽  
Xiaozhang Zhu

Recently, by elaborately designing nonfullerene acceptors and selecting suitable polymer donors great progresses have been made towards binary organic solar cells (OSCs) with power conversion efficiencies (PCEs) over 15%. Ternary organic photovoltaics by introducing a third component into the host binary system is recognized to be highly effective to elevate the performance through extending the light absorption, manipulating the recombination behavior of the carriers, and improving the morphology of the active layer. In this work, we synthesized a new electron-acceptor ZITI-4F matching it with the wide-bandgap polymer donor PBDB-T The PBDB-T:ZITI-4F-based OSC showed a high PCE of 12.33%. After introducing 40% of PC71BM as the third component, the ternary device achieved an improved PCE of 13.40% with simultaneously improved photovoltaic parameters. The higher performance of the ternary device can be attributed to the improved and more balanced charge mobility, reduced bimolecular recombination, and more favorable morphology. These results indicate that the cooperation of a fullerene-based acceptor and a nonfullerene acceptor to fabricate ternary OSCs is an effective approach to optimizing morphology and therefore to increase the performance of OSCs.


2017 ◽  
Vol 5 (6) ◽  
pp. 1275-1302 ◽  
Author(s):  
Wangqiao Chen ◽  
Qichun Zhang

The power conversion efficiencies (PCEs) of non-fullerene small molecule acceptors based on different donors have been compared and summarized.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Zhizhe Wang ◽  
Dazheng Chen ◽  
Chunfu Zhang ◽  
Zhenhua Lin ◽  
Yan Liu ◽  
...  

Efficient inverted organic solar cells (OSCs) with the MoO3(2 nm)/Ag (12 nm) transparent cathode and an aqueous solution ZnO electron extraction layer processed at low temperature are investigated in this work. The blend of low bandgap poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) and [6,6]-phenyl-C71-butyric acid methylester (PC71BM) is employed as the photoactive layer here. A power conversion efficiency (PCE) of 5.55% is achieved for such indium tin oxide- (ITO-) free OSCs under AM 1.5G simulated illumination, comparable to that of ITO-based reference OSCs (PCE of 6.11%). It is found that this ZnO interlayer not only slightly enhances the transparency of MoO3/Ag cathode but also obtains a lower root-mean-square (RMS) roughness on the MoO3/Ag surface. Meanwhile, ITO-free OSCs also show a good stability. The PCE of the devices still remains above 85% of the original values after 30 days, which is slightly superior to ITO-based reference OSCs where the 16% degradation in PCE is observed after 30 days. It may be instructive for further research of OSCs based on metal thin film electrodes.


2016 ◽  
Vol 6 (21) ◽  
pp. 1600660 ◽  
Author(s):  
Tenghooi Goh ◽  
Jing-Shun Huang ◽  
Kevin G. Yager ◽  
Matthew Y. Sfeir ◽  
Chang-Yong Nam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document