High-performance ternary organic solar cells with photoresponses beyond 1000 nm

2018 ◽  
Vol 6 (47) ◽  
pp. 24210-24215 ◽  
Author(s):  
Peiyao Xue ◽  
Yiqun Xiao ◽  
Tengfei Li ◽  
Shuixing Dai ◽  
Boyu Jia ◽  
...  

Panchromatic ternary organic solar cells with photoresponses beyond 1000 nm and power conversion efficiencies as high as 12.1% were fabricated using low-bandgap polymer PTB7-Th as a donor and ultra low-bandgap F8IC and mid-bandgap IDT-2BR as nonfullerene acceptors.

Nanoscale ◽  
2021 ◽  
Author(s):  
Congcong Zhao ◽  
Jiuxing Wang ◽  
Xuanyi Zhao ◽  
Zhonglin Du ◽  
Renqiang Yang ◽  
...  

The past decade has seen a tremendous development of organic solar cells (OSCs). To date, the high-performance OSCs have boosted the power conversion efficiencies (PCEs) over 17%, showing bright prospects...


2019 ◽  
Vol 01 (01) ◽  
pp. 030-037 ◽  
Author(s):  
Jianyun Zhang ◽  
Wenrui Liu ◽  
Shengjie Xu ◽  
Xiaozhang Zhu

Recently, by elaborately designing nonfullerene acceptors and selecting suitable polymer donors great progresses have been made towards binary organic solar cells (OSCs) with power conversion efficiencies (PCEs) over 15%. Ternary organic photovoltaics by introducing a third component into the host binary system is recognized to be highly effective to elevate the performance through extending the light absorption, manipulating the recombination behavior of the carriers, and improving the morphology of the active layer. In this work, we synthesized a new electron-acceptor ZITI-4F matching it with the wide-bandgap polymer donor PBDB-T The PBDB-T:ZITI-4F-based OSC showed a high PCE of 12.33%. After introducing 40% of PC71BM as the third component, the ternary device achieved an improved PCE of 13.40% with simultaneously improved photovoltaic parameters. The higher performance of the ternary device can be attributed to the improved and more balanced charge mobility, reduced bimolecular recombination, and more favorable morphology. These results indicate that the cooperation of a fullerene-based acceptor and a nonfullerene acceptor to fabricate ternary OSCs is an effective approach to optimizing morphology and therefore to increase the performance of OSCs.


2019 ◽  
Vol 3 (3) ◽  
pp. 399-402 ◽  
Author(s):  
Yaxin Gao ◽  
Dan Li ◽  
Zuo Xiao ◽  
Xin Qian ◽  
Junliang Yang ◽  
...  

Dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one-based wide-bandgap copolymers gave high open-circuit voltages and decent power conversion efficiencies in nonfullerene organic solar cells.


Author(s):  
Changkyun Kim ◽  
Shuhao Chen ◽  
Jin Su Park ◽  
Geon-U Kim ◽  
Hyunbum Kang ◽  
...  

While the power conversion efficiencies (PCEs) of organic solar cells (OSCs) have been dramatically increased through the development of small molecular acceptors (SMAs), achieving eco-friendly solution processability of OSCs is...


2017 ◽  
Vol 10 (1) ◽  
pp. 247-257 ◽  
Author(s):  
Jaewon Lee ◽  
Dong Hun Sin ◽  
Byungho Moon ◽  
Jisoo Shin ◽  
Heung Gyu Kim ◽  
...  

One-dimensional low bandgap polymer nanowires successfully incorporated into bulk-heterojunction organic solar cells, yielding a high PCE exceeding 10% with thick films.


2019 ◽  
Vol 7 (29) ◽  
pp. 8820-8824 ◽  
Author(s):  
Jianfeng Li ◽  
You Chen ◽  
Xiaochen Wang ◽  
Feng Li ◽  
Ailing Tang ◽  
...  

As the most successful end-capped unit in conventional A–D–A type non-fullerene acceptors (NFAs), 1,1-dicyanomethylene-3-indanone (IC) plays a significant role in enhancing the power conversion efficiencies (PCEs) of organic solar cells (OSCs).


2020 ◽  
Vol 4 (6) ◽  
pp. 2680-2685 ◽  
Author(s):  
Tongle Xu ◽  
Yuying Chang ◽  
Cenqi Yan ◽  
Qianguang Yang ◽  
Zhipeng Kan ◽  
...  

Two oligothiophenes were synthesized and used as electron donors in organic solar cells. The devices with a fluorinated donor (2FDC5T) achieved power conversion efficiencies of up to ca. 9.02% (vs. ca. 7.03% for the non-halogenated donor DC5T).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


Author(s):  
Shreyam Chatterjee ◽  
Seihou JINNAI ◽  
Yutaka Ie

Progressive advancement of remarkably high power conversion efficiencies (PCEs) of organic solar cells (OSCs) largely depends on the development of norfullerene acceptors (NFAs), revealing stupendous ability of OSCs to shift...


2021 ◽  
Author(s):  
Haifen Liu ◽  
Zixuan Zhu ◽  
Huafeng Li ◽  
Weili Fan ◽  
Kaihua Ning ◽  
...  

Non-fullerene acceptors have received a great deal of attention over the past several years, and numerous modifications on the molecular structures significantly boosted the power conversion efficiencies (PCEs). To be...


Sign in / Sign up

Export Citation Format

Share Document