scholarly journals Astilbin attenuates cerebral ischemia/reperfusion injury by inhibiting the TLR4/MyD88/NF-κB pathway

2019 ◽  
Vol 8 (6) ◽  
pp. 1002-1008
Author(s):  
Jing Li ◽  
Zhaowei Gu ◽  
Yue Liu ◽  
Yu Wang ◽  
Min Zhao

Abstract Ischemic stroke is the second most common cause of death worldwide and cerebral ischemia/reperfusion (I/R) injury also leads to serious tissue damage. Astilbin, a natural bioactive flavonoid compound, has been reported to have protective effects on neurological diseases. This study aims to investigate the effects of astilbin on cerebral I/R injury and determine the mechanisms involved. The results demonstrated that, in cerebral I/R rats, astilbin could attenuate I/R injury in the hippocampal region, decreasing the activity of lactate dehydrogenase (LDH) and malondialdehyde (MDA) in the rat brain. Astilbin also inhibited the I/R-induced upregulation of pro-inflammatory mediators (TNFα, IL-1β, IL-6). Similarly, in hypoxia/reperfusion (H/R) treated human neuroblastoma cells, astilbin could increase the cell viability of SH-SY5Y, decrease the activity of LDH and MDA, and inhibit the H/R-induced upregulation of pro-inflammatory mediators. For the mechanism study, western blot results indicated that astilbin could inhibit the expression of Toll-like receptor 4 (TLR4), myeloid differential protein 88 (MYD88) and phosphorylated NF-κB p65 in H/R treated SH-SY5Y cells. The research indicated that astilbin ameliorated cerebral I/R injury partly via the TLR4/MyD88/NF-κB pathway. Astilbin may have potential therapeutic effects on cerebral ischemia.

2020 ◽  
Author(s):  
Tian Zhang ◽  
Dan Xu ◽  
Fengyang Li ◽  
Rui Liu ◽  
Kai Hou ◽  
...  

Abstract Background: Indobufen is a new generation of antiplatelet agents and has been shown to have antithrombotic effects in animal models. However, the efficacy of Indobufen on cerebral ischemia/reperfusion (I/R) injury and its mechanisms remain to be investigated. Methods: In this study, the efficacy of Indobufen with both pre- (5days) and post- (15days) treatment on rats suffering middle cerebral artery occlusion/reperfusion (MCAO/R, 2h of ischemia and 24h/15days of reperfusion) was investigated. Furthermore, human umbilical vein endothelial cells (HUVECs) were cultured and underwent oxygen glucose deprivation/reoxygenation (OGD/R) injury for in vitro studies. Relationship between Indobufen and pyroptosis associated NF-κB/Caspase-1/GSDMD pathway was preliminarily discussed. Results: The pharmacodynamic tests revealed that Indobufen ameliorated I/R injury by decreasing the platelet aggregation, infarct size, brain edema and neurologic impairment in rats and rescuing cell apoptosis/pyroptosis in HUVECs. The underlying mechanisms were probably related to pyroptosis suppression by platelet inhibition induced regulation of the NF-κB/Caspase-1/GSDMD pathway.Conclusion: Overall, these studies indicates that Indobufen exerts protective and therapeutic effects against I/R injury by pyroptosis suppression via downregulating NF-κB/Caspase-1/GSDMD pathway.


Sign in / Sign up

Export Citation Format

Share Document