scholarly journals Electrochemical detection of exogenously administered melatonin in the brain

The Analyst ◽  
2020 ◽  
Vol 145 (7) ◽  
pp. 2612-2620 ◽  
Author(s):  
Elisa Castagnola ◽  
Kevin Woeppel ◽  
Asiyeh Golabchi ◽  
Moriah McGuier ◽  
Neharika Chodapaneedi ◽  
...  

Optimized square wave voltammetry for electrochemical measurement of exogenously administered MT in vivo.

Author(s):  
Hojin Shin ◽  
Abhinav Goyal ◽  
J. Hudson Barnett ◽  
Aaron E. Rusheen ◽  
Jason Yuen ◽  
...  

2019 ◽  
Vol 92 (1) ◽  
pp. 774-781 ◽  
Author(s):  
Hojin Shin ◽  
Yoonbae Oh ◽  
Cheonho Park ◽  
Yumin Kang ◽  
Hyun U. Cho ◽  
...  

2018 ◽  
Vol 121 ◽  
pp. 174-182 ◽  
Author(s):  
Yoonbae Oh ◽  
Michael L. Heien ◽  
Cheonho Park ◽  
Yu Min Kang ◽  
Jaekyung Kim ◽  
...  

2014 ◽  
Vol 6 (13) ◽  
pp. 4775-4782 ◽  
Author(s):  
M. Ardelean ◽  
F. Manea ◽  
N. Vaszilcsin ◽  
R. Pode

Detection results obtained for sulphide detection in real water using a CNF electrode by square-wave voltammetry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jason Yuen ◽  
Abhinav Goyal ◽  
Aaron E. Rusheen ◽  
Abbas Z. Kouzani ◽  
Michael Berk ◽  
...  

For over 40 years, in vivo microdialysis techniques have been at the forefront in measuring the effects of illicit substances on brain tonic extracellular levels of dopamine that underlie many aspects of drug addiction. However, the size of microdialysis probes and sampling rate may limit this technique’s ability to provide an accurate assessment of drug effects in microneural environments. A novel electrochemical method known as multiple-cyclic square wave voltammetry (M-CSWV), was recently developed to measure second-to-second changes in tonic dopamine levels at microelectrodes, providing spatiotemporal resolution superior to microdialysis. Here, we utilized M-CSWV and fast-scan cyclic voltammetry (FSCV) to measure changes in tonic or phasic dopamine release in the nucleus accumbens core (NAcc) after acute cocaine administration. Carbon-fiber microelectrodes (CFM) and stimulating electrodes were implanted into the NAcc and medial forebrain bundle (MFB) of urethane anesthetized (1.5 g/kg i.p.) Sprague-Dawley rats, respectively. Using FSCV, depths of each electrode were optimized by determining maximal MFB electrical stimulation-evoked phasic dopamine release. Changes in phasic responses were measured after a single dose of intravenous saline or cocaine hydrochloride (3 mg/kg; n = 4). In a separate group, changes in tonic dopamine levels were measured using M-CSWV after intravenous saline and after cocaine hydrochloride (3 mg/kg; n = 5). Both the phasic and tonic dopamine responses in the NAcc were augmented by the injection of cocaine compared to saline control. The phasic and tonic levels changed by approximately x2.4 and x1.9, respectively. These increases were largely consistent with previous studies using FSCV and microdialysis. However, the minimal disruption/disturbance of neuronal tissue by the CFM may explain why the baseline tonic dopamine values (134 ± 32 nM) measured by M-CSWV were found to be 10-fold higher when compared to conventional microdialysis. In this study, we demonstrated phasic dopamine dynamics in the NAcc with acute cocaine administration. M-CSWV was able to record rapid changes in tonic levels of dopamine, which cannot be achieved with other current voltammetric techniques. Taken together, M-CSWV has the potential to provide an unprecedented level of physiologic insight into dopamine signaling, both in vitro and in vivo, which will significantly enhance our understanding of neurochemical mechanisms underlying psychiatric conditions.


2021 ◽  
Author(s):  
Mohammed Qasim Mohammed ◽  
Hani Khalil Ismail ◽  
Hasan Fisal Alesary ◽  
Stephen Barton

Abstract The work herein concentrates on the electrochemical detection of heavy metal ions, specifically cadmium and lead ions. The introduction and modification of functional groups such as Schiff bases had led to an enhanced sensitivity of the electrode to analytes. In this study, a platinum electrode has for the first time been modified with poly(3,4- ethylenedioxythiophene) (PEDOT/Schiff base) in CH2Cl2 containing Bu4NPF6 for use to detection cadmium (II) and lead (II) ions. The structure and morphology of the polymer coatings were characterised by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively. The electrochemical synthesis and redox state response in monomer-free synthesised films have been studied by cyclic voltammetry. Moreover, the effect of scan rate on the electrochemical behaviour of the modified electrodes was also studied. The voltammetric findings have been used to calculate the surface coverage required for the polymer films and the stability of polymer electrodes in the monomer-free solutions. Square wave voltammetry (SWV) was applied for the determination of cadmium (II) and lead (II) ion concentrations and to assess the effects of pH on aqueous samples. The limits of detection for the modified electrode for cadmium (II) and lead (II) were found to be 0.95 μg L-1 and 1.84 μg L-1, respectively. These findings revealed that modified films can be considered good candidates for application in electrochemical detection devices


Sign in / Sign up

Export Citation Format

Share Document