Stabilizing photo-sensitive colchicine through rebalancing electron distribution of the reactive tropolone ring

CrystEngComm ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 30-34
Author(s):  
Xiaoyu Ma ◽  
Bingqing Zhu ◽  
Zeen Yang ◽  
Yuhang Jiang ◽  
Xuefeng Mei

Photo-sensitive tropolone was stabilized by rebalancing the electron distribution of the reactive system.

2018 ◽  
Vol 350 ◽  
pp. 874-879 ◽  
Author(s):  
Ying-Syuan Wu ◽  
Pei-Tzu Lee ◽  
Yu-Hsuan Huang ◽  
Tsai-Tung Kuo ◽  
Cheng-En Ho

2017 ◽  
Vol 53 (65) ◽  
pp. 9139-9142 ◽  
Author(s):  
Chao Xu ◽  
James W. B. Fyfe ◽  
Ciaran P. Seath ◽  
Steven H. Bennett ◽  
Allan J. B. Watson

Chemoselective control of a multi-reactive system allows two sequential C–C bond formations via two distinct reactivity modes, accessing pharmaceutical and natural product scaffolds.


Author(s):  
J. Taft∅

It is well known that for reflections corresponding to large interplanar spacings (i.e., sin θ/λ small), the electron scattering amplitude, f, is sensitive to the ionicity and to the charge distribution around the atoms. We have used this in order to obtain information about the charge distribution in FeTi, which is a candidate for storage of hydrogen. Our goal is to study the changes in electron distribution in the presence of hydrogen, and also the ionicity of hydrogen in metals, but so far our study has been limited to pure FeTi. FeTi has the CsCl structure and thus Fe and Ti scatter with a phase difference of π into the 100-ref lections. Because Fe (Z = 26) is higher in the periodic system than Ti (Z = 22), an immediate “guess” would be that Fe has a larger scattering amplitude than Ti. However, relativistic Hartree-Fock calculations show that the opposite is the case for the 100-reflection. An explanation for this may be sought in the stronger localization of the d-electrons of the first row transition elements when moving to the right in the periodic table. The tabulated difference between fTi (100) and ffe (100) is small, however, and based on the values of the scattering amplitude for isolated atoms, the kinematical intensity of the 100-reflection is only 5.10-4 of the intensity of the 200-reflection.


Author(s):  
Bernd Tesche ◽  
Tobias Schilling

The objective of our work is to determine:a) whether both of the imaging methods (TEM, STM) yield comparable data andb) which method is better suited for a reliable structure analysis of microclusters smaller than 1.5 nm, where a deviation of the bulk structure is expected.The silver was evaporated in a bell-jar system (p 10−5 pa) and deposited onto a 6 nm thick amorphous carbon film and a freshly cleaved highly oriented pyrolytic graphite (HOPG).The average deposited Ag thickness is 0.1 nm, controlled by a quartz crystal microbalance at a deposition rate of 0.02 nm/sec. The high resolution TEM investigations (100 kV) were executed by a hollow-cone illumination (HCI). For the STM investigations a commercial STM was used. With special vibration isolation we achieved a resolution of 0.06 nm (inserted diffraction image in Fig. 1c). The carbon film shows the remarkable reduction in noise by using HCI (Fig. 1a). The HOPG substrate (Fig. 1b), cleaved in sheets thinner than 30 nm for the TEM investigations, shows the typical arrangement of a nearly perfect stacking order and varying degrees of rotational disorder (i.e. artificial single crystals). The STM image (Fig. 1c) demonstrates the high degree of order in HOPG with atomic resolution.


1986 ◽  
Vol 83 ◽  
pp. 619-621 ◽  
Author(s):  
F. Vergand ◽  
B. Iraqi ◽  
C. Bonnelle ◽  
E. Ramaroson ◽  
M.F. Guilleux ◽  
...  

1998 ◽  
Vol 08 (PR7) ◽  
pp. Pr7-33-Pr7-42
Author(s):  
L. L. Alves ◽  
G. Gousset ◽  
C. M. Ferreira

Author(s):  
Didier Debaise

Process and Reality ends with a warning: ‘[t]he chief danger to philosophy is narrowness in the selection of evidence’ (PR, 337). Although this danger of narrowness might emerge from the ‘idiosyncrasies and timidities of particular authors, of particular social groups, of particular schools of thought, of particular epochs in the history of civilization’ (PR, 337), we should not be mistaken: it occurs within philosophy, in its activity, its method. And the fact that this issue arises at the end of Process and Reality reveals the ambition that has accompanied its composition: Whitehead has resisted this danger through the form and ambition of his speculative construction. The temptation of a narrowness in selection attempts to expel speculative philosophy at the same time as it haunts each part of its system.


Author(s):  
Tomotaka WADA ◽  
Yuki NAKANISHI ◽  
Ryohta YAMAGUCHI ◽  
Kazushi FUJIMOTO ◽  
Hiromi OKADA

Sign in / Sign up

Export Citation Format

Share Document