Remarkable improvement in phosgene detection with a defect-engineered phosphorene sensor: first-principles calculations

2020 ◽  
Vol 22 (17) ◽  
pp. 9677-9684 ◽  
Author(s):  
Mehdi Ghambarian ◽  
Zahra Azizi ◽  
Mohammad Ghashghaee

A drastic improvement in the phosgene sensitivity of black phosphorene with defect engineering is reported for the first time within a periodic density functional theory framework.

2015 ◽  
Vol 17 (25) ◽  
pp. 16351-16358 ◽  
Author(s):  
Weiyang Yu ◽  
Zhili Zhu ◽  
Chun-Yao Niu ◽  
Chong Li ◽  
Jun-Hyung Cho ◽  
...  

Using first-principles density functional theory calculations, we investigate the geometries, electronic structures, and thermodynamic stabilities of substitutionally doped phosphorene sheets with group III, IV, V, and VI elements.


2014 ◽  
Vol 213 ◽  
pp. 47-50
Author(s):  
Mary A. Chibisova ◽  
Andrey N. Chibisov

In the present work the effects of the isomorphic substitution of silicon with iron on the structure of a nanoporous SiO2 surface and its interaction with methane were studied within a density functional theory framework. We predicted the structures and detailed energetics for the adsorption of CH4 on the surface. We found that the local atomic structure of the Fe/SiO2 nanocomposites and the CH4 molecules changed because of the interactions.


2021 ◽  
Author(s):  
H. R. Mahida ◽  
Deobrat Singh ◽  
Yogesh Sonvane ◽  
Sanjeev K. Gupta ◽  
P. B. Thakor ◽  
...  

In the present study, we have investigated the structural, electronic, and charge transport properties of pristine, hydrogenated, and oxidized Si2BN monolayers via first-principles calculations based on density functional theory (DFT).


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


2015 ◽  
Vol 17 (45) ◽  
pp. 30598-30605 ◽  
Author(s):  
Ming-Kai Hsiao ◽  
Chia-Hao Su ◽  
Ching-Yang Liu ◽  
Hui-Lung Chen

We employed monolayer tungsten metal to modify the Fe(111) surface, denoted as W@Fe(111), and calculated the adsorption and dehydrogenation behaviors of NH3 on W@Fe(111) surface via first-principles calculations based on density functional theory (DFT).


2014 ◽  
Vol 1015 ◽  
pp. 377-380
Author(s):  
Tao Chen ◽  
Ying Chen ◽  
Yin Zhou ◽  
Hong Chen

Using the first-principles calculations within density functional theory (DFT), we investigated the electronic and magnetic properties of (100) surface of inverse Heusler alloy Mn2CoSb with five different terminations. Our work reveals that the surface Mn atom moves to vacuum while surface Co atom moves to slab. Moreover, duo to the reason that the surface atom lost half of the nearest atoms with respect to the bulk phase, resulting in the decrease of hybridization, the atom-resolved spin magnetic moments of surface atoms are enhanced. Further investigation on DOS and PDOS showed that half-metallicity was preserved only in SbSb-termination while was destroyed in MnCo-, MnSb-, MnMn-, and CoCo-termination due to the appearance of surface states.


2009 ◽  
Vol 1200 ◽  
Author(s):  
Markus E. Gruner

AbstractThis contribution reports static ionic displacements in ferromagnetic disordered Fe70Pd30 alloys obtained by relaxation of the ionic positions of a 108-atom supercell within the framework of density functional theory. Comparison with a simple statistical model based on Lennard-Jones pair interactions reveals that these displacements are significantly larger than can be explained by the different sizes of the elemental constituents. The discrepancies are presumably related to collective displacements of the Fe atoms. Corresponding distortions are experimentally observed for ordered Fe3Pt and predicted by first-principles calculations for all ordered Fe-rich L12 alloys with Ni group elements and originate from details of the electronic structure at the Fermi level.


2019 ◽  
Vol 7 (39) ◽  
pp. 12306-12311 ◽  
Author(s):  
He-Ping Su ◽  
Shu-Fang Li ◽  
Yifeng Han ◽  
Mei-Xia Wu ◽  
Churen Gui ◽  
...  

First-principles density functional theory calculations, for the first time, was used to predict the Mg3TeO6-to-perovskite type phase transition in Mn3TeO6 at around 5 GPa.


RSC Advances ◽  
2019 ◽  
Vol 9 (44) ◽  
pp. 25900-25911 ◽  
Author(s):  
Esmaeil Pakizeh ◽  
Jaafar Jalilian ◽  
Mahnaz Mohammadi

In this study, based on the density functional theory and semi-classical Boltzmann transport theory, we investigated the structural, thermoelectric, optical and phononic properties of the Fe2ZrP compound.


2017 ◽  
Vol 19 (23) ◽  
pp. 15021-15029 ◽  
Author(s):  
Yusheng Wang ◽  
Nahong Song ◽  
Min Jia ◽  
Dapeng Yang ◽  
Chikowore Panashe ◽  
...  

First principles calculations based on density functional theory were carried out to study the electronic and magnetic properties of C2N nanoribbons (C2NNRs).


Sign in / Sign up

Export Citation Format

Share Document