Role of aromatic vs. aliphatic amine for the variation of structural, electrical and catalytic behaviors in a series of silver phosphonate extended hybrid solids

2020 ◽  
Vol 49 (39) ◽  
pp. 13618-13634
Author(s):  
Tanmay Rom ◽  
Avijit Kumar Paul

Four silver phosphonate frameworks have been prepared under mild hydrothermal conditions in the presence of different organic amines. The amine molecules have played crucial roles for structure building, catalytic behavior and dielectric properties.

2012 ◽  
Vol 19 (06) ◽  
pp. 1250062 ◽  
Author(s):  
X. H. ZHANG ◽  
Y. L. YUE ◽  
H. T. WU

Boroaluminosilicate glasses containing La2O3 were prepared by the normal quenching method. The glass transition temperatures (Tg) were measured by differential scanning calorimetry (DSC). The structural role of RO was investigated by nuclear magnetic resonance (NMR). Chemical durability was evaluated by weight losses of glass samples after immersion in HC1 solution. High resolution scanning electron microscopy (HR-SEM) was used to examine the surface micrographs of corroded glass samples. The dielectric constant and tangent loss were measured in the frequency range 10–106 Hz. The results revealed that chemical durability and dielectric properties increased with increasing La2O3 content.


2016 ◽  
Vol 90 (8) ◽  
pp. 869-880 ◽  
Author(s):  
S. Anjum ◽  
H. Nazli ◽  
R. Khurram ◽  
Talat Zeeshan ◽  
S. Riaz ◽  
...  

2010 ◽  
Vol 111 (15) ◽  
pp. 4505-4505 ◽  
Author(s):  
Felipe A. La Porta ◽  
Regis T. Santiago ◽  
Teodorico C. Ramalho ◽  
Matheus P. Freitas ◽  
Elaine F. F. Da Cunha

2017 ◽  
Vol 846 ◽  
pp. 012007
Author(s):  
Markus Diantoro ◽  
Norma Dian Prastiwi ◽  
Ahmad Taufiq ◽  
Nurul Hidayat ◽  
Nandang Mufti ◽  
...  

2015 ◽  
Vol 54 (10S) ◽  
pp. 10NB04 ◽  
Author(s):  
Eisuke Magome ◽  
Yoshihiro Kuroiwa ◽  
Chikako Moriyoshi ◽  
Yoshinobu Hirose ◽  
Shintaro Ueno ◽  
...  

2021 ◽  
Author(s):  
Maria A. Kokh ◽  
Clement Laskar ◽  
Gleb S. Pokrovski

<p>Knowledge of molybdenum (Mo) speciation under hydrothermal conditions is a key for understanding the formation of porphyry deposits which are the primary source of Mo. Existing experimental and theoretical studies have revealed a complex speciation, solubility and partitioning behavior of Mo in fluid-vapor-melt systems, depending on conditions, with the (hydrogen)molybdate (HMoO<sub>4</sub><sup>-</sup>, MoO<sub>4</sub><sup>2-</sup>) ions and their ion pairs with alkalis in S and Cl-poor fluids [1-3], mixed oxy-chloride species in strongly acidic saline fluids [4, 5], and (hydrogen)sulfide complexes (especially, MoS<sub>4</sub><sup>2-</sup>) in reduced H<sub>2</sub>S-bearing fluids and vapors [6-8]. However, these available data yet remain discrepant and are unable to account for the observed massive transport of Mo in porphyry-related fluids revealed by fluid inclusion analyses demonstrating 100s ppm of Mo (e.g., [9]). A potential missing ligand for Mo may be the recently discovered trisulfur radical ion (S<sub>3</sub><sup>•-</sup>), which is predicted to be abundant in sulfate-sulfide rich acidic-to-neutral porphyry-like fluids [10]. We performed exploratory experiments of MoS<sub>2</sub> solubility in model sulfate-sulfide-S<sub>3</sub><sup>•-</sup>-bearing aqueous solutions at 300°C and 450 bar. We demonstrate that Mo can be efficiently transported by S<sub>3</sub><sup>•-</sup>-bearing fluids at concentrations ranging from several 10s ppm to 100s ppm, depending on the fluid pH and redox, whereas the available data on OH-Cl-S complexes cited above predict negligibly small (<100 ppb) Mo concentrations at our conditions. Work is in progress to extend the experiments to wider T-P-composition range of porphyry fluids and to quantitatively assess the role of S<sub>3</sub><sup>•-</sup> in Mo transport by geological fluids.</p><ul><li>1. Kudrin A.V. (1989) <em>Geochem. Int. </em><strong>26</strong>, 87–99.</li> <li>2. Minubayeva Z. and Seward T.M. (2010) <em>Geochim. Cosmochim. Acta</em> <strong>74</strong>, 4365–4374.</li> <li>3. Shang L.B. et al. (2020) <em>Econ. Geol. </em><strong>115</strong>, 661–669.</li> <li>4. Ulrich T. and Mavrogenes J. (2008) <em>Geochim. Cosmochim. Acta </em><strong>72</strong>, 2316-2330.</li> <li>5. Borg S. et al. (2012) <em>Geochim. Cosmochim. Acta</em> <strong>92</strong>, 292–307.</li> <li>6. Zhang L. et al. (2012) <em>Geochim. Cosmochim. Acta</em> <strong>77</strong>, 175–185.</li> <li>7. Kokh M.A. et al. (2016) <em>Geochim. Cosmochim. Acta </em><strong>187</strong>, 311–333.</li> <li>8. Liu W. et al. (2020) <em>Geochim. Cosmochim. Acta</em> <strong>290</strong>, 162–179.</li> <li>9. Kouzmanov K. and Pokrovski G.S. (2012) <em>Soc. Econ. Geol. Spec. Pub.</em> <strong>16</strong>, 573–618.</li> <li>10. Pokrovski G.S. and Dubessy J. (2015) <em>Earth Planet. Sci. Lett. </em><strong>411</strong>, 298–309.</li> </ul>


Sign in / Sign up

Export Citation Format

Share Document