role of zn
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 35)

H-INDEX

19
(FIVE YEARS 6)

Author(s):  
Zhong-zhen Luo ◽  
Songting Cai ◽  
Shiqiang Hao ◽  
Trevor Bailey ◽  
Yubo Luo ◽  
...  

Although Ga doping can weaken the electron phonon coupling of n-type PbTe, Ga-doped PbTe has a relatively low carrier concentration (n) and high lattice thermal conductivity (κlat), resulting in a...


Author(s):  
Rasoul Khajeh ◽  
Hamid Reza Jafarian ◽  
Reza Jabraeili ◽  
Ali Reza Eivani ◽  
Seyed Hossein Seyedein ◽  
...  
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6774
Author(s):  
Julia Camut ◽  
Sahar Ayachi ◽  
Gustavo Castillo-Hernández ◽  
Sungjin Park ◽  
Byungki Ryu ◽  
...  

Thermoelectric generators are a reliable and environmentally friendly source of electrical energy. A crucial step for their development is the maximization of their efficiency. The efficiency of a TEG is inversely related to its electrical contact resistance, which it is therefore essential to minimize. In this paper, we investigate the contacting of an Al electrode on Mg2(Si,Sn) thermoelectric material and find that samples can show highly asymmetric electrical contact resistivities on both sides of a leg (e.g., 10 µΩ·cm2 and 200 µΩ·cm2). Differential contacting experiments allow one to identify the oxide layer on the Al foil as well as the dicing of the pellets into legs are identified as the main origins of this behavior. In order to avoid any oxidation of the foil, a thin layer of Zn is sputtered after etching the Al surface; this method proves itself effective in keeping the contact resistivities of both interfaces equally low (<10 µΩ·cm2) after dicing. A slight gradient is observed in the n-type leg’s Seebeck coefficient after the contacting with the Zn-coated electrode and the role of Zn in this change is confirmed by comparing the experimental results to hybrid-density functional calculations of Zn point defects.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Xiaolong Guo ◽  
Xiangyu Ma ◽  
Jialiang Zhang ◽  
Jinghuan Zhu ◽  
Tian Lu ◽  
...  

Abstract Background Zinc (Zn) is an important nutrient for human beings, which is also an essential micronutrient for crop growth. This study investigated the role of Zn in coordinating the mineral elements absorption in modern wheat (Triticum aestivum L.) cultivars with a new developed method. Results A method was developed, and showed a robust capability to simultaneously investigate seven mineral elements uptake in wheat seedling. With this method, we found low Zn supply (<  1 μM) promoted the absorption of potassium (K), magnesium (Mg) and manganese (Mn) in wheat seedling, while high Zn supply (>  1 μM) significantly inhibited the absorption of these elements. Cultivars with the green genes (Rht-B1b and Rht-D1b) showed a higher uptake capability on ammonium (NH4+), and cultivars with Rht-B1b allele can uptake more phosphors (P), K, calcium (Ca), Mn and Zn compared to cultivars with Rht-D1b. Further analysis indicated higher uptake capability of NH4+ in cultivars contained Rhts was independent of Zn. Conclusion The key role of Zn in coordinating for mineral elements absorption was identified in modern wheat cultivars, providing the reference for Zn application in wheat. Meanwhile, this study provides a robust method for quantifying the absorption of mineral elements, which may be adopted into the broadly investigations on the coordinated nutrients absorption of plant.


Author(s):  
Xiangming Liu ◽  
Xiaoshi Peng ◽  
Tao Xu ◽  
Yu Long Li ◽  
Huiyue Wei ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (14) ◽  
pp. 7288
Author(s):  
Francisco Andrés Peralta ◽  
J. Pablo Huidobro-Toro ◽  
Raúl Mera-Adasme

To ascertain the role of Zn(II) as an allosteric modulator on P2X4R, QM/MM molecular dynamic simulations were performed on the WT and two P2X4R mutants suggested by previous electrophysiological data to affect Zn(II) binding. The Gibbs free energy for the reduction of the putative P2X4R Zn(II) binding site by glutathione was estimated at −22 kcal/mol. Simulations of the WT P2X4R head domain revealed a flexible coordination sphere dominated by an octahedral geometry encompassing C126, N127, C132, C149, C159 and a water molecule. The C132A mutation disrupted the metal binding site, leading to a coordination sphere with a majority of water ligands, and a displacement of the metal ion towards the solvent. The C132A/C159A mutant exhibited a tendency towards WT-like stability by incorporating the R148 backbone to the coordination sphere. Thus, the computational findings agree with previous experimental data showing Zn(II) modulation for the WT and C132A/C159A variants, but not for the C132A mutant. The results provide molecular insights into the nature of the Zn(II) modulation in P2X4R, and the effect of the C132A and C132A/C159A mutations, accounting for an elusive modulation mechanism possibly occurring in other extracellular or membrane protein.


Author(s):  
D. Duzgun Ergun ◽  
S. Dursun ◽  
N. Pastaci Ozsobaci ◽  
M. Naziroglu ◽  
D. Ozcelik

Sign in / Sign up

Export Citation Format

Share Document