Syntheses, crystal structures, and biological evaluations of new dinuclear platinum(II) complexes with 1,2,4-triazole derivate as bridging ligands

2021 ◽  
Author(s):  
Jianwei Wang ◽  
Xinhua Li ◽  
Caixia Yuan ◽  
Feng Su ◽  
Yanbo Wu ◽  
...  

A series of new dinuclear platinum(II) complexes with general formula [Pt2(μ-HL)4] (1–4), where H2L is 4-[(5-chloro-2-hydroxy-benzylidene)-amino)]-3-R-1,2,4-triazole-5-thione: R = H (1), methyl (2), ethyl (3) and propyl (4), have been synthesized...

1995 ◽  
Vol 50 (5) ◽  
pp. 828-832 ◽  
Author(s):  
Joachim Pickardt ◽  
Isabella Hoffmeister

Abstract Crystals of both complexes were obtained by evaporation of the ethanol solvent. The crystals of [{CuCl(C10N4H24)}2][CdCl4] are tetragonal, space group I4̄2d, Z = 4, a = b = 1784.1(11), c = 1101.1(8) pm. Each copper atom is bonded to one cyclam ligand and two chlorine atoms which are acting as bridging ligands and connect the copper atoms to chains of distorted octahedra. Distorted tetrahedra of CdCl4 are situated in cavities between these chains. The crystals of [Cu(C10N4H24)][CdCl3(H2O)2]Cl are monoclinic (b), space group C2/c, Z = 4, a = 1581.9(8), b = 1323.3(7), c = 924.0(5) pm, β = 94.31(5)°. Cadmium is coordinated to four chlorine atoms and two water molecules, while all of the chlorine atoms act as bridging ligands connecting every cadmium atom to two adjacent cadmium atoms and to two copper atoms which lie in plane with the N atoms.


1981 ◽  
Vol 34 (10) ◽  
pp. 2139 ◽  
Author(s):  
AJ Finney ◽  
MA Hitchman ◽  
CL Raston ◽  
GL Rowbottom ◽  
AH White

The preparation of a series of novel compounds of general formula [Ni5L4(NO2)8(OH)2] formed by ethane-1,2-diamine or one of five N-substituted ethane-1,2-diamines (L) is described. The crystal and molecular structures of the ethane-1,2-diamine, N,N'-diethylethane-1,2-diamine and N,N-dimethylethane-1,2-diamine complexes are reported. Each compound contains a planar, pentameric arrangement of nickel(II) ions, linked by bridging hydroxide and nitrite ligands. The details of the nitrite bridges differ among the complexes, causing differences in their electronic and infrared spectra. The structural variations are probably caused by the differing steric requirements of the amine substituents.


2020 ◽  
Vol 76 (8) ◽  
pp. 1213-1221
Author(s):  
Elizabeth C. Manickas ◽  
Matthias Zeller ◽  
Curtis M. Zaleski

The syntheses and crystal structures for the compounds tetra-μ-aqua-tetrakis{2-[azanidylene(oxido)methyl]phenolato}tetrakis(μ2-3-hydroxybenzoato)dysprosium(III)tetramanganese(III)sodium(I) N,N-dimethylacetamide decasolvate, [DyMn4Na(C7H5O3)4(C7H4NO2)4(H2O)4]·10C4H9NO or [DyIIINa(4-OHben)4{12-MCMn(III)N(shi)-4}(H2O)4]·10DMA, 1, and tetra-μ-aqua-tetrakis{2-[azanidylene(oxido)methyl]phenolato}tetrakis(μ2-3-hydroxybenzoato)dysprosium(III)tetramanganese(III)sodium(I) N,N-dimethylformamide tetrasolvate, [DyMn4Na(C7H5O3)4(C7H4NO2)4(H2O)4]·4C3H7NO or [DyIIINa(3-OHben)4{12-MCMn(III)N(shi)-4}(H2O)4]·4DMF, 2, and where MC is metallacrown, shi3− is salicylhydroximate, 3-OHben is 3-hydroxybenzoate, DMA is N,N-dimethylacetamide, 4-OHben is 4-hydroxybenzoate, and DMF is N,N-dimethylformamide, are reported. For both 1 and 2, the macrocyclic metallacrown consists of an [MnIII—N—O] ring repeat unit, and the domed metallacrown captures two ions in the central cavity: a DyIII ion on the convex side of the metallacrown and an Na+ ion the concave side. The MnIII ions are six-coordinate with an elongated tetragonally distorted octahedral geometry. Both the DyIII and Na+ ions are eight-coordinate. The DyIII ions possess a square-antiprismatic geometry, while the Na+ ions have a distorted biaugmented trigonal–prismatic geometry. Four 3-hydroxybenzoate or 4-hydroxybenzoate ligands bridge each MnIII ion to the central DyIII ion. For 1, whole-molecule disorder is observed for the main molecule, excluding only the DyIII and Na+ ions, and the occupancy ratio refined to 0.8018 (14):0.1982 (14). Three DMA molecules were refined as disordered with two in general positions by an approximate 180° rotation and the third disordered twice by general disorder as well as by an exact 180° rotation about a twofold axis that bisects it. The occupancy ratios refined to 0.496 (8):0.504 (8), 0.608 (9):0.392 (9), and 2×0.275 (7):2×0.225 (7), respectively. For 2, segments of the metallacrown are disordered including the DyIII ion, one of the Mn ions, two of the Mn-bound 4-hydroxybenzoate ligands, the Mn-bridging salicylhydroximate ligand, and portions of the remaining three shi3− ligands. The occupancy ratio for the metallacrown disorder refined to 0.849 (9):0.151 (9). Two DMF solvent molecules are also disordered, each over two orientations. The disorder ratios refined to 0.64 (3):0.36 (3) and to 0.51 (2):0.49 (2), respectively. For 2, the crystal under investigation was refined as a non-merohedric twin by a 90° rotation around the real a axis [twin ratio 0.9182 (8):0.0818 (8)].


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Snežana Rajković ◽  
Beata Warżajtis ◽  
Marija D. Živković ◽  
Biljana Đ. Glišić ◽  
Urszula Rychlewska ◽  
...  

Dinuclear platinum(II) complexes, [{Pt(en)Cl}2(μ-qx)]Cl2·2H2O (1), [{Pt(en)Cl}2(μ-qz)](ClO4)2(2), and [{Pt(en)Cl}2(μ-phtz)]Cl2·4H2O (3), were synthesized and characterized by different spectroscopic techniques. The crystal structure of1was determined by single-crystal X-ray diffraction analysis, while the DFT M06-2X method was applied in order to optimize the structures of1–3. The chlorido Pt(II) complexes1–3were converted into the corresponding aqua species1a–3a, and their reactions with an equimolar amount of Ac–L–Met–Gly and Ac–L–His–Gly dipeptides were studied by1H NMR spectroscopy in the pH range 2.0 < pH < 2.5 at 37°C. It was found that, in all investigated reactions with the Ac–L–Met–Gly dipeptide, the cleavage of the Met–Gly amide bond had occurred, but complexes2aand3ashowed lower catalytic activity than1a. However, in the reactions with Ac–L–His–Gly dipeptide, the hydrolysis of the amide bond involving the carboxylic group of histidine was observed only with complex1a. The observed disparity in the catalytic activity of these complexes is thought to be due to different relative positioning of nitrogen atoms in the bridging qx, qz, and phtz ligands and consequent variation in the intramolecular separation of the two platinum(II) metal centers.


2014 ◽  
Vol 43 (19) ◽  
pp. 7006-7019 ◽  
Author(s):  
Matteo Atzori ◽  
Flavia Artizzu ◽  
Elisa Sessini ◽  
Luciano Marchiò ◽  
Danilo Loche ◽  
...  

Here we report on new tris(haloanilato)metallate(iii) complexes with general formula [M(X2An)3]3−, their crystal structures, DFT calculations and magnetic properties.


Sign in / Sign up

Export Citation Format

Share Document