Stepwise enhancement of fluorescence induced by anion coordination and non-covalent interactions

2021 ◽  
Vol 50 (1) ◽  
pp. 76-80
Author(s):  
Dan Zhang ◽  
Jie Zhao ◽  
Liping Cao ◽  
Dong Yang ◽  
Bozhong Chen ◽  
...  

A multi-level fluorescence enhancement was presented by a bis–bis(urea)-decorated tetraphenylethene ligand through anion coordination and binding of methyl viologen.

2021 ◽  
Vol 25 ◽  
Author(s):  
Jun Zheng ◽  
Yan Mei Jin ◽  
Xi Nan Yang ◽  
Lin Zhang ◽  
Dao Fa Jiang ◽  
...  

: Single-crystal X-ray diffraction analysis, nuclear magnetic resonance (NMR), and other characterization methods are used to characterize the complexes formed by cyclopentano-cucurbit[6]uril (abbreviated as CyP6Q[6]) as a host interacting with p-aminobenzenesulfonamide (G1), 4,4'-diaminobiphenyl (G2), and (E)-4,4'-diamino-1,2-diphenylethene (G3) as guests, respectively. The experimental results show that these three aromatic amine molecules have the same interaction mode with CyP6Q[6], interacting with its negatively electric potential portals. The supramolecular interactions include non-covalent interactions of hydrogen bonding and ion-dipole between host and guest molecules. CdCl2 acts as a structureinducing agent to form self-assemblies of multi-dimensional and multi-level supramolecular frameworks that may have potential applications in various functional materials.


Molecules ◽  
2018 ◽  
Vol 23 (3) ◽  
pp. 572 ◽  
Author(s):  
Matteo Savastano ◽  
Carla Bazzicalupi ◽  
Palma Mariani ◽  
Antonio Bianchi

Author(s):  
Cristobal Perez ◽  
Melanie Schnell ◽  
Peter Schreiner ◽  
Norbert Mitzel ◽  
Yury Vishnevskiy ◽  
...  

2020 ◽  
Author(s):  
Luis Vasquez ◽  
Agnieszka Dybala-Defratyka

<p></p><p>Very often in order to understand physical and chemical processes taking place among several phases fractionation of naturally abundant isotopes is monitored. Its measurement can be accompanied by theoretical determination to provide a more insightful interpretation of observed phenomena. Predictions are challenging due to the complexity of the effects involved in fractionation such as solvent effects and non-covalent interactions governing the behavior of the system which results in the necessity of using large models of those systems. This is sometimes a bottleneck and limits the theoretical description to only a few methods.<br> In this work vapour pressure isotope effects on evaporation from various organic solvents (ethanol, bromobenzene, dibromomethane, and trichloromethane) in the pure phase are estimated by combining force field or self-consistent charge density-functional tight-binding (SCC-DFTB) atomistic simulations with path integral principle. Furthermore, the recently developed Suzuki-Chin path integral is tested. In general, isotope effects are predicted qualitatively for most of the cases, however, the distinction between position-specific isotope effects observed for ethanol was only reproduced by SCC-DFTB, which indicates the importance of using non-harmonic bond approximations.<br> Energy decomposition analysis performed using the symmetry-adapted perturbation theory (SAPT) revealed sometimes quite substantial differences in interaction energy depending on whether the studied system was treated classically or quantum mechanically. Those observed differences might be the source of different magnitudes of isotope effects predicted using these two different levels of theory which is of special importance for the systems governed by non-covalent interactions.</p><br><p></p>


2021 ◽  
Author(s):  
P. Mialane ◽  
C. Mellot-Draznieks ◽  
P. Gairola ◽  
M. Duguet ◽  
Y. Benseghir ◽  
...  

This review provides a thorough overview of composites with molecular catalysts (polyoxometalates, or organometallic or coordination complexes) immobilised into MOFs via non-covalent interactions.


Sign in / Sign up

Export Citation Format

Share Document