Self-assembly mode and supramolecular framework of cyclopentanocucurbit[6]uril and aromatic amines

2021 ◽  
Vol 25 ◽  
Author(s):  
Jun Zheng ◽  
Yan Mei Jin ◽  
Xi Nan Yang ◽  
Lin Zhang ◽  
Dao Fa Jiang ◽  
...  

: Single-crystal X-ray diffraction analysis, nuclear magnetic resonance (NMR), and other characterization methods are used to characterize the complexes formed by cyclopentano-cucurbit[6]uril (abbreviated as CyP6Q[6]) as a host interacting with p-aminobenzenesulfonamide (G1), 4,4'-diaminobiphenyl (G2), and (E)-4,4'-diamino-1,2-diphenylethene (G3) as guests, respectively. The experimental results show that these three aromatic amine molecules have the same interaction mode with CyP6Q[6], interacting with its negatively electric potential portals. The supramolecular interactions include non-covalent interactions of hydrogen bonding and ion-dipole between host and guest molecules. CdCl2 acts as a structureinducing agent to form self-assemblies of multi-dimensional and multi-level supramolecular frameworks that may have potential applications in various functional materials.

2018 ◽  
Vol 74 (11) ◽  
pp. 1434-1439
Author(s):  
Hong-Tao Zhang ◽  
Xiao-Long Wang

In recent years, much initial interest and enthusiasm has focused on the self-assembly of coordination polymers due to the aesthetics of their crystalline architectures and their potential applications as new functional materials. As part of an exploration of chiral coordination polymers, a new twofold interpenetrated two-dimensional (2D) coordination polymer, namely, poly[[tetraaquabis[μ3-(2R,2′R)-2,2′-(benzene-1,4-dicarboxamido)dipropionato-κ5 O,O′:O′′,O′′′:O′′]dicadmium(II)] trihydrate], {[Cd2(C14H14N2O6)2(H2O)4]·3H2O} n , has been synthesized by the reaction of Cd(CH3COO)2·2H2O with the designed ligand (2R,2′R)-2,2′-(benzene-1,4-dicarboxamido)dipropionic acid (H2 L). The compound has been structurally characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction and single-crystal X-ray diffraction analysis. In the crystal structure, each CdII cation binds to three carboxylate groups from two crystallographically independent L 2− dianions. Four carboxylate groups link two crystallographically independent cadmium cations into a 4,4-connected secondary building unit (SBU). The resulting SBUs are extended into a two-dimensional folding sheet via the terephthalamide moiety of the ligand as a spacer, which can be simplified as a (4,4)-connected 4,4L15 net with the point symbol (3.53.62)(32.52.62). In the lattice, two independent folding sheets interpenetrate each other to yield a double-sheet layer. The resulting 2D layers pack in parallel arrays through intermolecular hydrogen bonds and interlayer π–π interactions. The thermal stability and photoluminescence properties of the title compound have been investigated and it exhibits an enhanced fluorescence emission and a longer lifetime compared with free H2 L.


Nanoscale ◽  
2017 ◽  
Vol 9 (48) ◽  
pp. 19191-19200 ◽  
Author(s):  
Jinglin Shen ◽  
Zhi Wang ◽  
Di Sun ◽  
Guokui Liu ◽  
Shiling Yuan ◽  
...  

Supramolecular self-assembly, based on non-covalent interactions, has been employed as an efficient approach to obtain various functional materials from nanometer-sized building blocks, in particular, [Ag6(mna)6]6−, mna = mercaptonicotinate (Ag6-NC).


Author(s):  
Kari Raatikainen ◽  
Massimo Cametti ◽  
Kari Rissanen

The series of haloanilinium and halopyridinium salts: 4-IPhNH3Cl (1), 4-IPhNH3Br (5), 4-IPhNH3H2PO4 (6), 4-ClPhNH3H2PO4 (8), 3-IPyBnCl (9), 3-IPyHCl (10) and 3-IPyH-5NIPA (3-iodopyridinium 5-nitroisophthalate, 13), where hydrogen or/and halogen bonding represents the most relevant non-covalent interactions, has been prepared and characterized by single crystal X-ray diffraction. This series was further complemented by extracting some relevant crystal structures: 4-BrPhNH3Cl (2, CCDC ref. code TAWRAL), 4-ClPhNH3Cl (3, CURGOL), 4-FPhNH3Cl (4, ANLCLA), 4-BrPhNH3H2PO4, (7, UGISEI), 3-BrPyHCl, (11, CIHBAX) and 3-ClPyHCl, (12, VOQMUJ) from Cambridge Structural Database for sake of comparison. Based on the X-ray data it was possible to highlight the balance between non-covalent forces acting in these systems, where the relative strength of the halogen bonding C–X···A− (X = I, Br or Cl) and the ratio between the halogen and hydrogen bonds [C–X···A− : D–H···A−] varied across the series.


2020 ◽  
Vol 235 (10) ◽  
pp. 477-480 ◽  
Author(s):  
Alexander G. Tskhovrebov ◽  
Alexander S. Novikov ◽  
Andreii S. Kritchenkov ◽  
Victor N. Khrustalev ◽  
Matti Haukka

AbstractA synthesis of the trans-dibromogold(III) t-Bu-Xantphos complex and its self-assembly into infinite 1-dimensional chain in the solid state is reported. The new complex characterized using elemental analyses (C, H, N), ESI-MS, 1H and 13C NMR techniques and X-ray diffraction analysis. Results of DFT calculations followed by the topological analysis of the electron density distribution within the framework of QTAIM method at the ωB97XD/DZP-DKH level of theory reveal that strength of attractive intermolecular non-covalent interactions Br···Br in the crystal is 1.2–1.6 kcal/mol.


2021 ◽  
Vol 22 (19) ◽  
pp. 10663
Author(s):  
Mónica Benito ◽  
Yannick Roselló ◽  
Miquel Barceló-Oliver ◽  
Antonio Frontera ◽  
Elies Molins

Among non-covalent interactions, halogen bonding is emerging as a new powerful tool for supramolecular self-assembly. Here, along with a green and effective method, we report three new halogen-bonded cocrystals containing uracil derivatives and 1,2,4,5-tetrafluoro-3,6-diiodobenzene as X-bond donor coformer. These multicomponent solids were prepared both by solvent-drop grinding and solution methods and further characterized by powder and single-crystal X-ray diffraction, Fourier-transformed infrared spectroscopy, and thermal methods (TGA-DSC). In order to study the relative importance of hydrogen versus halogen bonds in the crystal packing, computational methods were applied.


2018 ◽  
Vol 74 (12) ◽  
pp. 1581-1585 ◽  
Author(s):  
Ni-Ya Li ◽  
Dong Liu

The assembly of coordination polymers from metal ions and organic moieties is currently attracting considerable attention in crystal engineering due to their intriguing architectures and potential applications as functional materials. A new coordination polymer, namely poly[[μ2-trans-1,2-bis(pyridin-3-yl)ethylene-κ2 N:N′]bis(μ4-4,4′-oxydibenzoato-κ6 O:O,O′:O′′:O′′,O′′′)dicadmium(II)], [Cd2(C14H8O5)2(C12H10N2)] n or [Cd2(4,4′-OBB)2(3,3′-BPE)] n , has been synthesized by the the self-assembly of Cd(NO3)2·4H2O, 4,4′-oxydibenzoic acid (4,4′-H2OBB) and trans-1,2-bis(pyridin-3-yl)ethene (3,3′-BPE) under hydrothermal conditions. The title compound was structurally characterized by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction analysis. Each CdII centre is coordinated by six carboxylate O atoms from four different 4,4′-OBB2− ligands and by one pyridyl N atom form a 3,3′-BPE ligand. Adjacent crystallographically equivalent CdII ions are bridged by 4,4′-OBB2− ligands, affording a two-dimensional [Cd(4,4′-OBB)] n net extending in the ac plane. Neighbouring [Cd(4,4′-OBB)] n nets are interlinked by 3,3′-BPE along the b axis to form a three-dimensional (3D) [Cd2(4,4′-OBB)2(3,3′-BPE)] n coordination network. In the network, each CdII centre is linked by four different 4,4′-OBB2− ligands and one 3,3′-BPE ligand. Meanwhile, each 4,4′-OBB2− ligand connects four separate CdII ions. Therefore, if the 4,4′-OBB2− ligands and CdII ions are considered as 4- and 5-connecting nodes, the structure of the title compound can be simplified as a 3D (4,5)-connected binodal framework with the rare (4462)(4466) TCS topology (Pearson, 1985; Blake et al., 2011). The thermal stability and photoluminescence properties of the title compound have also been investigated.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4331
Author(s):  
David B. Hobart ◽  
Michael A. G. Berg ◽  
Hannah M. Rogers ◽  
Joseph S. Merola

The reaction of palladium(II) acetate with acyclic amino acids in acetone/water yields square planar bis-chelated palladium amino acid complexes that exhibit interesting non-covalent interactions. In all cases, complexes were examined by multiple spectroscopic techniques, especially HRMS (high resolution mass spectrometry), IR (infrared spectroscopy), and 1H NMR (nuclear magnetic resonance) spectroscopy. In some cases, suitable crystals for single crystal X-ray diffraction were able to be grown and the molecular structure was obtained. The molecular geometries of the products are discussed. Except for the alanine complex, all complexes incorporate water molecules into the extended lattice and exhibit N-H···O and/or O···(HOH)···O hydrogen bonding interactions. The non-covalent interactions are discussed in terms of the extended lattice structures exhibited by the structures.


2016 ◽  
Vol 40 (12) ◽  
pp. 10116-10126 ◽  
Author(s):  
Ghodrat Mahmoudi ◽  
Farhad Akbari Afkhami ◽  
Himanshu Sekhar Jena ◽  
Parisa Nematollahi ◽  
Mehdi D. Esrafili ◽  
...  

Self-assembly of Zn(ii) compounds is influenced by a counter ion and non-covalent interactions.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6731
Author(s):  
Haruki Inoue ◽  
Yuga Yamashita ◽  
Yoshiki Ozawa ◽  
Toshikazu Ono ◽  
Masaaki Abe

Two hexanuclear paddlewheel-like clusters appending six carboxylic-acid pendants have been isolated with the inclusion of polar solvent guests: [Cu6(Hmna)6]·7DMF (1·7DMF) and [Ag6(Hmna)6]·8DMSO (2·8DMSO), where H2mna = 2-mercaptonicotininc acid, DMF = N,N’-dimethylformamide, and DMSO = dimethyl sulfoxide. The solvated clusters, together with their fully desolvated forms 1 and 2, have been characterized by FTIR, UV–Vis diffuse reflectance spectroscopy, TG-DTA analysis, and DFT calculations. Crystal structures of two solvated clusters 1·7DMF and 2·8DMSO have been unambiguously determined by single-crystal X-ray diffraction analysis. Six carboxylic groups appended on the clusters trap solvent guests, DMF or DMSO, through H-bonds. As a result, alternately stacked lamellar architectures comprising of a paddlewheel cluster layer and H-bonded solvent layer are formed. Upon UV illumination (λex = 365 nm), the solvated hexasilver(I) cluster 2·8DMSO gives intense greenish-yellow photoluminescence in the solid state (λPL = 545 nm, ΦPL = 0.17 at 298 K), whereas the solvated hexacopper(I) cluster 1·7DMF displays PL in the near-IR region (λPL = 765 nm, ΦPL = 0.38 at 298 K). Upon complete desolvation, a substantial bleach in the PL intensity (ΦPL < 0.01) is observed. The desorption–sorption response was studied by the solid-state PL spectroscopy. Non-covalent interactions in the crystal including intermolecular H-bonds, CH···π interactions, and π···π stack were found to play decisive roles in the creation of the lamellar architectures, small-molecule trap-and-release behavior, and guest-induced luminescence enhancement.


Sign in / Sign up

Export Citation Format

Share Document