Al-Doped Fe2O3 nanoparticles: advanced anode materials for high capacity lithium ion batteries

2021 ◽  
Vol 50 (15) ◽  
pp. 5115-5119
Author(s):  
Yongqing Yuan ◽  
Shijie Liang ◽  
Weipei Liu ◽  
Qiong Zhao ◽  
Puguang Peng ◽  
...  

We successfully synthesized Al-Fe2O3 anode with high initial discharge capacity of 1210 mAh g−1 under 0.5 A g−1 and maintained around 900 mAh g−1 during the cycles. The doping of Al assists in the stability and electrochemical behavior of the whole electrode.

CrystEngComm ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 399-402
Author(s):  
Yanli Fu ◽  
Liqiong Wu ◽  
Shengang Xu ◽  
Shaokui Cao ◽  
Xinheng Li

LiNi0.5Mn1.5O4 microcubes grown from nanowires delivered an initial discharge capacity of 123 mAh g−1 at 1C and maintained 95% of the capacity after 50 cycles due to interfacial effect.


2015 ◽  
Vol 1120-1121 ◽  
pp. 281-285 ◽  
Author(s):  
Yue Zhang ◽  
Yu Jing Zhu ◽  
Yuan Xiang Gu ◽  
Rui Xin Chen

We synthesized nano-Li4Ti5O12 particles by solvothermal method. The as-prepared materials were characterized by XRD, SEM, TEM and electrochemical measurements. The Li4Ti5O12Li4Ti5O12 showed excellent rate capability and cycle ability. The as-preparedLi4Ti5O12 Li4Ti5O12 electrode exhibited highly initial discharge capacity 176 mAh/g at 0.1 C rate up to, which was slightly higher than its theoretical capacity (175 mAh/g). By increasing the C-rate, the cell showed 152, 143, 138 and 135 mAh/g at 0.5, 1, 1.5 and 2 C, respectively.


2017 ◽  
Vol 46 (38) ◽  
pp. 12908-12915 ◽  
Author(s):  
Ajay Kumar ◽  
O. D. Jayakumar ◽  
Jagannath Jagannath ◽  
Parisa Bashiri ◽  
G. A. Nazri ◽  
...  

Despite having the same carbon content, Li2Fe0.99Mg0.01SiO4/C delivered the highest initial discharge capacity and also exhibited the best rate capability and cycle stability.


2013 ◽  
Vol 06 (06) ◽  
pp. 1350054 ◽  
Author(s):  
CHAO WU ◽  
QUANCHAO ZHUANG ◽  
YONGXIN WU ◽  
LEILEI TIAN ◽  
XINXI ZHANG ◽  
...  

Fe 3 O 4/carbon nanotubes (CNTs) nanocomposites are successfully prepared by a facile hydrothermal method, without any reducing agents. SEM shows that the CNTs are dispersed well in the Fe 3 O 4 nanoparticles of 50 to 100 nm in size. The electrochemical properties of the prepared nanocomposites as anode materials are further evaluated by galvanostatic charge/discharge cycling and cyclic voltammetry (CV). Results show that the nanocomposites display an initial discharge capacity of 1421 mAh⋅g-1 and maintain 1100 mAh⋅g-1 up to 40 cycles in the voltage of 0.005–3.0 V at 100 mAh⋅g-1. When the current density is to 0.5, 1, 2, 5 and 1 C, the nanocomposites still exhibit discharge capacity of 1615.8, 817.0, 585.0, 391.0 and (585.0 ± 45.0) mAh⋅g-1, respectively, which are potential for anode materials in lithium-ion batteries.


RSC Advances ◽  
2014 ◽  
Vol 4 (26) ◽  
pp. 13293-13303 ◽  
Author(s):  
Yu-Chi Pan ◽  
Diganta Saikia ◽  
Jason Fang ◽  
Li-Duan Tsai ◽  
George T. K. Fey ◽  
...  

The plasticized hybrid electrolyte exhibits a maximum ionic conductivity of 6.4 mS cm−1 at 30 °C and an initial discharge capacity of 123 mA h g−1 in battery testing.


2017 ◽  
Vol 5 (8) ◽  
pp. 4075-4083 ◽  
Author(s):  
Qiang Chen ◽  
Fengqi Lu ◽  
Ying Xia ◽  
Hai Wang ◽  
Xiaojun Kuang

Mo-doped SnS2 nanosheets supported on carbon cloth are synthesized. The nanosheets, as additive-free integrated electrodes for LIBs, exhibit a high initial discharge capacity, superior cycling performance and rate capability.


2013 ◽  
Vol 833 ◽  
pp. 280-285
Author(s):  
Zhong Sheng Wen

Silicon material possesses the highest theoretic capacity (4200mAh/g, ten times of the capacity of commercialized carbon anode materials) of all known anode materials for lithium ion batteries and thus receives lots of attention to date. Silicon-containing composite electrode for lithium ion batteries was prepared by high-energy ball milling process. The microstructure and morphology of silicon electrode was investigated in detail. The effect of the structure transformation of the electrode by ball milling on the electrochemical behavior was systematically analyzed. Electrode precursors after a mediate ball milling time of 45min is beneficial to get a better cycling performance, due to the well distributed and less destroy of Carboxyl Methyl Cellulose (CMC). Weak lithium insertion into CMC occurs unavoidably in the charging-discharging process of the composite electrodes, which should be the main reason for the sudden disability of electrode. The electrochemical properties can get a dramatic enhancement within voltage window of 0.02-1.5V. Excellent cyclability with high capacity retention above 1800mAh/g after 40 cycles could be gained by controlling the ball-milling time and the voltage windows. It might be a feasible way to obtain satisfactory cyclability for high capacity anode materials.


Author(s):  
Hualing Tian ◽  
Zhonggang Liu ◽  
Yanjun Cai ◽  
Zhi Su

Abstract Due to the high theoretical capacity, high platform voltage, stable structure, and mild conditions for synthesis, LiVOPO4 is expected to become the next generation of cathode materials for lithium-ion batteries (LIBs). However, due to the relatively weak ionic conductivity, its commercial application has been largely limited. The paper reported that acetylene black was used as the reducing agent and the pure phase nanostructured orthorhombic β-LiVOPO4 was obtained by carbothermal reduction method. A significant improvement in ionic conductivity was achieved, and the results were compared with previous studies, the initial discharge capacity of the material was considerably enhanced. The results show that the electrical conductivity and the initial discharge capacity of the material were also significantly improved. The sample obtained by holding at 600 °C for 10 h exhibited a maximum discharge capacity of 141.4 mAh g−1 between 3 V and 4.5 V at 0.05 C, with a value of 136.3 mAh g−1, retained after 50 cycles. This represents capacity retention of 96.39%.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Dan Qin ◽  
Peng Yan ◽  
Guangzhong Li ◽  
Yunchuang Wang ◽  
Yukuan An ◽  
...  

Hierarchical CoO nano/microstructures are synthesized via a hydrothermal method and a subsequent annealed process. When evaluated for use in lithium-ion batteries, hierarchical CoO nano/microstructures show a high initial discharge capacity of 1370 mAh/g and a high reversible capacity of 1148 mAh/g over 20 cycles at a current density of 100 mA/g. Superior rate performance with coulombic efficiency of about 100% upon galvanostatic cycling is also revealed. The excellent electrochemical properties of hierarchical CoO nano/microstructures make it a promising alternative anode material for high power lithium-ion batteries applications.


Sign in / Sign up

Export Citation Format

Share Document