scholarly journals Water quality changes during the first meter of managed aquifer recharge

Author(s):  
Kristofer Hägg ◽  
Jing Li ◽  
Masoumeh Heibati ◽  
Kathleen R. Murphy ◽  
Catherine J. Paul ◽  
...  

The direct sampling method revealed the high treatment capacity of the unsaturated zone and the significant impact of infiltration basin management on microbial communities in managed aquifer recharge (MAR).

2009 ◽  
Vol 30 (1) ◽  
pp. 33
Author(s):  
Simon Toze ◽  
Deborah Reed

Managed aquifer recharge (MAR) is a technique that can be used to capture and store water in aquifers under managed conditions for later recovery and use for specific purposes. There is a need to predict water quality changes during MAR, particularly when recycled water is used as the recharged water. An understanding of the interaction between the geochemistry of the aquifer and the microbial population dynamics in the groundwater is important for understanding any water quality changes. A study was undertaken to monitor the changes in the microbial population and link this to changes in the geochemistry. The results obtained showed that the recharge of recycled water to aquifers causes a change in microbial population structure which has direct links to corresponding changes in geochemistry.


2013 ◽  
Vol 4 (1) ◽  
pp. 1-8 ◽  
Author(s):  
A. F. Hamadeh ◽  
S. K. Sharma ◽  
G. Amy

Constructed wetlands (CWs) and managed aquifer recharge (MAR) represent commonly used natural treatment systems for reclamation and reuse of wastewater. However, each of these technologies have some limitations with respect to removal of different contaminants. Combining these two technologies into a hybrid CW-MAR system will lead to synergy in terms of both water quality and costs. This promising technology will help in the reduction of bacteria and viruses, trace and heavy metals, organic micropollutants, and nutrients. Use of subsurface flow CWs as pre-treatment for MAR has multiple benefits: (i) it creates a barrier for different microbial and chemical pollutants, (ii) it reduces the residence time for water recovery, and (iii) it avoids clogging during MAR as CWs can remove suspended solids and enhance the reclaimed water quality. This paper analyzes the removal of different contaminants by CW and MAR systems based on a literature review. It is expected that a combination of these natural treatment systems (CWs and MAR) could become an attractive, efficient and cost-effective technology for water reclamation and reuse.


2015 ◽  
Vol 15 (3) ◽  
pp. 578-588 ◽  
Author(s):  
Robert G. Maliva

The performance of managed aquifer recharge (MAR) systems is highly dependent upon local hydrogeology, which controls the movement and mixing of stored water and fluid–rock interactions, which can impact recharged water quality. The leading edge of MAR technology is the integration of data obtained using conventional and advanced aquifer characterization technologies into groundwater models that have improved predictive capabilities. Borehole and surface geophysical technologies and geostatistical and stochastic modeling methods, in particular, offer opportunities for improved aquifer characterization and modeling. The objective is to develop more accurate groundwater models that can be used as site-screening tools to identify locations and aquifers that have the greatest potential for successful implementation of MAR and to evaluate various design and operational options to find optimal local solutions.


Sign in / Sign up

Export Citation Format

Share Document