Investigating the calcium binding characteristics of black bean protein hydrolysate

2020 ◽  
Vol 11 (10) ◽  
pp. 8724-8734
Author(s):  
Man Wang ◽  
Zhaojun Zheng ◽  
Chunhuan Liu ◽  
Hong Sun ◽  
Yuanfa Liu

Ficin hydrolysate of black bean protein exhibited strong calcium binding capacity, which was further optimized by RSM, and the hydrolysate bound with calcium ions mainly via carboxyl oxygen atoms and amino nitrogen atoms.

2015 ◽  
Vol 82 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Shun-Li Huang ◽  
Li-Na Zhao ◽  
Xixi Cai ◽  
Shao-Yun Wang ◽  
Yi-Fan Huang ◽  
...  

The bioavailability of dietary ionised calcium is affected by intestinal basic environment. Calcium-binding peptides can form complexes with calcium to improve its absorption and bioavailability. The aim of this study was focused on isolation and characterisation of a calcium-binding peptide from whey protein hydrolysates. Whey protein was hydrolysed using Flavourzyme and Protamex with substrate to enzyme ratio of 25 : 1 (w/w) at 49 °C for 7 h. The calcium-binding peptide was isolated by DEAE anion-exchange chromatography, Sephadex G-25 gel filtration and reversed phase high-performance liquid chromatography (RP-HPLC). A purified peptide of molecular mass 204 Da with strong calcium binding ability was identified on chromatography/electrospray ionisation (LC/ESI) tandem mass spectrum to be Glu-Gly (EG) after analysis and alignment in database. The calcium binding capacity of EG reached 67·81 μg/mg, and the amount increased by 95% compared with whey protein hydrolysate complex. The UV and infrared spectrometer analysis demonstrated that the principal sites of calcium-binding corresponded to the carboxyl groups and carbonyl groups of glutamic acid. In addition, the amino group and peptide amino are also the related groups in the interaction between EG and calcium ion. Meanwhile, the sequestered calcium percentage experiment has proved that EG-Ca is significantly more stable than CaCl2 in human gastrointestinal tract in vitro. The findings suggest that the purified dipeptide has the potential to be used as ion-binding ingredient in dietary supplements.


1964 ◽  
Vol 207 (6) ◽  
pp. 1339-1344 ◽  
Author(s):  
Giuseppe Inesi ◽  
Setsuro Ebashi ◽  
Shizuo Watanabe

A particulated fraction, consisting mainly of protein and phospholipid, was prepared from bovine heart muscle by differential centrifugation. This microsomal suspension was found to inhibit superprecipitation of myosin B and to have a strong calcium-binding capacity. Although the preparation appeared to be very labile, a constant degree of activity was obtained by adding α-tocopherol before the homogenization of cardiac tissue. Evidence was gained for an interaction of calcium ions with synthetic lecithin in water suspensions. However, this interaction was competitively inhibited by the presence of magnesium and ATP, which are required cofactors for calcium binding by microsomes. It is proposed that in cardiac muscle, sarcoplasmic reticulum plays essentially the same role as in skeletal muscle.


2021 ◽  
Author(s):  
Sun Xiaodong ◽  
Ruan Shiyan ◽  
Yongliang Zhuang ◽  
Sun Liping

Walnut protein hydrolysate (WPH) was prepared via simulated gastrointestinal digestion. The degree of hydrolysis (DH), amino acid composition, and relative molecular weight distribution of WPH were analyzed. Results showed that...


2015 ◽  
Vol 6 (3) ◽  
pp. 816-823 ◽  
Author(s):  
Cai Xixi ◽  
Zhao Lina ◽  
Wang Shaoyun ◽  
Rao Pingfan

The chelation of calcium ions to WPH caused molecular folding and aggregation leading to the formation of a WPH-calcium chelate of nanoparticle size, and the principal sites of calcium-binding corresponded to the carboxyl groups and carbonyl groups of WPH. The WPH-calcium chelate could significantly improve calcium absorption at the intestinal level.


2014 ◽  
Vol 541-542 ◽  
pp. 214-219 ◽  
Author(s):  
Li Na Zhao ◽  
Shao Yun Wang ◽  
Shun Li Huang ◽  
Yi Fan Huang

To study the relationship between the hydrolysis degree and calcium-binding capacity of whey protein by enzymatic hydrolysis, the response surface method was firstly used to investigate optimized the hydrolysis conditions of whey protein with protamex and flavorzyme. The optimum process parameters for the whey protein hydrolysis were as follows: Whey protein concentration was 5.0% (w/v), the ratio of protease to whey protein was 4.0% (w/w), the mass ratios of protamex to flavorzyme (w/w) was 2:1, and the reaction temperature was 49 °C. The hydrolysate obtained after the hydrolysis of 7 h, with a hydrolysis degree of 25.92%, possessed the highest Ca-binding capacity of 27.92%. Finally, the relationship between the hydrolysis degree and calcium-binding capacity was established and whey protein hydrolysate with high calcium-binding capacity was prepared, which can provide basic theories for the following optimization of chelation of whey protein hydrolysate with calcium.


2014 ◽  
Vol 62 (42) ◽  
pp. 10274-10282 ◽  
Author(s):  
Lina Zhao ◽  
Qimin Huang ◽  
Shunli Huang ◽  
Jiaping Lin ◽  
Shaoyun Wang ◽  
...  

1985 ◽  
Vol 54 (02) ◽  
pp. 533-538 ◽  
Author(s):  
Wilfried Thiel ◽  
Ulrich Delvos ◽  
Gert Müller-Berghaus

SummaryA quantitative determination of soluble fibrin in plasma was carried out by affinity chromatography. For this purpose, desAA-fibrin and fibrinogen immobilized on Sepharose 4B were used at the stationary side whereas batroxobin-induced 125I-desAA-fibrin or thrombin-induced 125I-desAABB-fibrin mixed with plasma containing 131I-fibrinogen represented the fluid phase. The binding characteristics of these mixtures to the immobilized proteins were compared at 20° C and 37° C. Complete binding of both types of fibrin to the immobilized desAA-fibrin was always seen at 20° C as well as at 37° C. However, binding of soluble fibrin was accompanied by substantial binding of fibrinogen that was more pronounced at 20° C. Striking differences depending on the temperature at which the affinity chromatography was carried out, were documented for the fibrinogen-fibrin interaction. At 20° C more than 90% of the applied desAA-fibrin was bound to the immobilized fibrinogen whereas at 37° C only a mean of 17% were retained at the fibrinogen-Sepharose column. An opposite finding with regard to the tested temperature was made with the desAABB-fibrin. Nearly complete binding to insolubilized fibrinogen was found at 37° C (95%) but only 58% of the desAABB-fibrin were bound at 20° C. The binding patterns did not change when the experiments were performed in the presence of calcium ions. The opposite behaviour of the two types of soluble fibrin to immobilized fibrinogen at the different temperatures, together with the substantial binding of fibrinogen in the presence of soluble fibrin to insolubilized fibrin in every setting tested, devaluates affinity chromatography as a tool in the quantitative assessment of soluble fibrin in patients’ plasma.


2021 ◽  
pp. 129332
Author(s):  
Lan Jiang ◽  
Shuhong Li ◽  
Nan Wang ◽  
Shuang Zhao ◽  
Yue Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document