The Relationship between the Hydrolysis Degree and Calcium-Binding Capacity of Whey Protein by Enzymatic Hydrolysis

2014 ◽  
Vol 541-542 ◽  
pp. 214-219 ◽  
Author(s):  
Li Na Zhao ◽  
Shao Yun Wang ◽  
Shun Li Huang ◽  
Yi Fan Huang

To study the relationship between the hydrolysis degree and calcium-binding capacity of whey protein by enzymatic hydrolysis, the response surface method was firstly used to investigate optimized the hydrolysis conditions of whey protein with protamex and flavorzyme. The optimum process parameters for the whey protein hydrolysis were as follows: Whey protein concentration was 5.0% (w/v), the ratio of protease to whey protein was 4.0% (w/w), the mass ratios of protamex to flavorzyme (w/w) was 2:1, and the reaction temperature was 49 °C. The hydrolysate obtained after the hydrolysis of 7 h, with a hydrolysis degree of 25.92%, possessed the highest Ca-binding capacity of 27.92%. Finally, the relationship between the hydrolysis degree and calcium-binding capacity was established and whey protein hydrolysate with high calcium-binding capacity was prepared, which can provide basic theories for the following optimization of chelation of whey protein hydrolysate with calcium.

2015 ◽  
Vol 82 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Shun-Li Huang ◽  
Li-Na Zhao ◽  
Xixi Cai ◽  
Shao-Yun Wang ◽  
Yi-Fan Huang ◽  
...  

The bioavailability of dietary ionised calcium is affected by intestinal basic environment. Calcium-binding peptides can form complexes with calcium to improve its absorption and bioavailability. The aim of this study was focused on isolation and characterisation of a calcium-binding peptide from whey protein hydrolysates. Whey protein was hydrolysed using Flavourzyme and Protamex with substrate to enzyme ratio of 25 : 1 (w/w) at 49 °C for 7 h. The calcium-binding peptide was isolated by DEAE anion-exchange chromatography, Sephadex G-25 gel filtration and reversed phase high-performance liquid chromatography (RP-HPLC). A purified peptide of molecular mass 204 Da with strong calcium binding ability was identified on chromatography/electrospray ionisation (LC/ESI) tandem mass spectrum to be Glu-Gly (EG) after analysis and alignment in database. The calcium binding capacity of EG reached 67·81 μg/mg, and the amount increased by 95% compared with whey protein hydrolysate complex. The UV and infrared spectrometer analysis demonstrated that the principal sites of calcium-binding corresponded to the carboxyl groups and carbonyl groups of glutamic acid. In addition, the amino group and peptide amino are also the related groups in the interaction between EG and calcium ion. Meanwhile, the sequestered calcium percentage experiment has proved that EG-Ca is significantly more stable than CaCl2 in human gastrointestinal tract in vitro. The findings suggest that the purified dipeptide has the potential to be used as ion-binding ingredient in dietary supplements.


2014 ◽  
Vol 62 (42) ◽  
pp. 10274-10282 ◽  
Author(s):  
Lina Zhao ◽  
Qimin Huang ◽  
Shunli Huang ◽  
Jiaping Lin ◽  
Shaoyun Wang ◽  
...  

2021 ◽  
Author(s):  
He Liu ◽  
Ying Lv ◽  
Jingting Xu ◽  
Chen Chen ◽  
Shuntang Guo

In this study, soybean peptides (10-30kDa) with high calcium binding capacity were prepared by enzymatic hydrolysis and ultrafiltration. The results of cell experiments showed that the peptide could transport calcium...


2013 ◽  
Vol 781-784 ◽  
pp. 1856-1860 ◽  
Author(s):  
Li Na Zhao ◽  
Shao Yun Wang ◽  
Shun Li Huang ◽  
Yi Fan Huang

To optimum the chelation technology of whey protein hydrolysate with calcium, the response surface method was used to investigate optimized technological conditions. The result showed that the optimum process parameters for the whey protein hydrolysate-calcium chelation were whey protein peptide and CaCl2 ratio of 24 : 1 (w/w), whey protein hydrolysate concentration 3.5 %, pH 7.5, reaction time 20 min, reaction temperature 30 °C. Finally, the optimum level was established and whey protein hydrolysate-calcium chelate was obtained, which can provide basic theories for the following function and activity evaluation of this potential calcium supplement.


2021 ◽  
Author(s):  
Sun Xiaodong ◽  
Ruan Shiyan ◽  
Yongliang Zhuang ◽  
Sun Liping

Walnut protein hydrolysate (WPH) was prepared via simulated gastrointestinal digestion. The degree of hydrolysis (DH), amino acid composition, and relative molecular weight distribution of WPH were analyzed. Results showed that...


2019 ◽  
Vol 14 (1) ◽  
pp. 254-261 ◽  
Author(s):  
Rongchun Wang ◽  
Shenghua He ◽  
Yifan Xuan ◽  
Cuilin Cheng

Author(s):  
Carolina Soares Moura ◽  
Pablo Christiano Barboza Lollo ◽  
Priscila Neder Morato ◽  
Luciana Hisayama Nisishima ◽  
Everardo Magalhães Carneiro ◽  
...  

2020 ◽  
Vol 5 (5) ◽  
pp. 65-77
Author(s):  
K. M. K. Kebary ◽  
S. A. Husien ◽  
R. M. Badawi ◽  
M. A. M. Habib

2019 ◽  
Vol 59 (6) ◽  
pp. 2449-2462 ◽  
Author(s):  
Yung-Chih Chen ◽  
Harry A. Smith ◽  
Aaron Hengist ◽  
Oliver J. Chrzanowski-Smith ◽  
Ulla Ramer Mikkelsen ◽  
...  

Abstract Purpose To examine whether calcium type and co-ingestion with protein alter gut hormone availability. Methods Healthy adults aged 26 ± 7 years (mean ± SD) completed three randomized, double-blind, crossover studies. In all studies, arterialized blood was sampled postprandially over 120 min to determine GLP-1, GIP and PYY responses, alongside appetite ratings, energy expenditure and blood pressure. In study 1 (n = 20), three treatments matched for total calcium content (1058 mg) were compared: calcium citrate (CALCITR); milk minerals rich in calcium (MILK MINERALS); and milk minerals rich in calcium plus co-ingestion of 50 g whey protein hydrolysate (MILK MINERALS + PROTEIN). In study 2 (n = 6), 50 g whey protein hydrolysate (PROTEIN) was compared to MILK MINERALS + PROTEIN. In study 3 (n = 6), MILK MINERALS was compared to the vehicle of ingestion (water plus sucralose; CONTROL). Results MILK MINERALS + PROTEIN increased GLP-1 incremental area under the curve (iAUC) by ~ ninefold (43.7 ± 11.1 pmol L−1 120 min; p < 0.001) versus both CALCITR and MILK MINERALS, with no difference detected between CALCITR (6.6 ± 3.7 pmol L−1 120 min) and MILK MINERALS (5.3 ± 3.5 pmol L−1 120 min; p > 0.999). MILK MINERALS + PROTEIN produced a GLP-1 iAUC ~ 25% greater than PROTEIN (p = 0.024; mean difference: 9.1 ± 6.9 pmol L−1 120 min), whereas the difference between MILK MINERALS versus CONTROL was small and non-significant (p = 0.098; mean difference: 4.2 ± 5.1 pmol L−1 120 min). Conclusions When ingested alone, milk minerals rich in calcium do not increase GLP-1 secretion compared to calcium citrate. Co-ingesting high-dose whey protein hydrolysate with milk minerals rich in calcium increases postprandial GLP-1 concentrations to some of the highest physiological levels ever reported. Registered at ClinicalTrials.gov: NCT03232034, NCT03370484, NCT03370497.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3362
Author(s):  
Ji Eun Shin ◽  
Seok Jun Park ◽  
Seung Il Ahn ◽  
Se-Young Choung

Sarcopenia, a loss of skeletal muscle mass and function, is prevalent in older people and associated with functional decline and mortality. Protein supplementation is necessary to maintain skeletal muscle mass and whey protein hydrolysates have the best nutrient quality among food proteins. In the first study, C57BL/6 mice were subjected to immobilization for 1 week to induce muscle atrophy. Then, mice were administered with four different whey protein hydrolysates for 2 weeks with continuous immobilization. Among them, soluble whey protein hydrolysate (WP-S) had the greatest increase in grip strength, muscle weight, and cross-sectional area of muscle fiber than other whey protein hydrolysates. To investigate the molecular mechanism, we conducted another experiment with the same experimental design. WP-S significantly promoted the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway and inhibited the PI3K/Akt/forkhead box O (FoxO) pathway. In addition, it increased myosin heavy chain (MyHC) expression in both the soleus and quadriceps and changed MyHC isoform expressions. In conclusion, WP-S attenuated muscle atrophy induced by immobilization by enhancing the net protein content regulating muscle protein synthesis and degradation. Thus, it is a necessary and probable candidate for developing functional food to prevent sarcopenia.


Sign in / Sign up

Export Citation Format

Share Document