scholarly journals Role of the electronically-active amorphous state in low-temperature processed In2O3 thin-film transistors

2020 ◽  
Vol 1 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Ahmad R. Kirmani ◽  
Emily F. Roe ◽  
Christopher M. Stafford ◽  
Lee J. Richter

Process-structure-transport relationships in low-temperature-processed, blade-coated In2O3 transistors using sol–gel and combustion chemistries are explored with X-ray scattering techniques. Electron mobility of ≈4.5 cm2 V−1 s−1 is achieved at ≈220 °C.

ACS Omega ◽  
2017 ◽  
Vol 2 (10) ◽  
pp. 6968-6974 ◽  
Author(s):  
Clemente G. Alvarado-Beltrán ◽  
Jorge L. Almaral-Sánchez ◽  
Israel Mejia ◽  
Manuel A. Quevedo-López ◽  
Rafael Ramirez-Bon

2010 ◽  
Vol 10 (1) ◽  
pp. 45-50 ◽  
Author(s):  
K. K. Banger ◽  
Y. Yamashita ◽  
K. Mori ◽  
R. L. Peterson ◽  
T. Leedham ◽  
...  

2015 ◽  
Vol 17 (15) ◽  
pp. 9841-9848 ◽  
Author(s):  
Moheb Nayeri ◽  
Kim Nygård ◽  
Maths Karlsson ◽  
Manuel Maréchal ◽  
Manfred Burghammer ◽  
...  

Structural and chemical changes during the sol–gel synthesis of silica using an ionic liquid are investigatedin situand simultaneously by X-ray scattering and μ-Raman spectroscopy.


Author(s):  
Mai Xuan Dung ◽  
Mai Van Tuan ◽  
Hoang Quang Bac ◽  
Dinh Thi Cham ◽  
Le Quang Trung ◽  
...  

Zinc oxide (ZnO) has been widely deployed as electron conducting layer in emerging photovoltaics including quantum dot, perovskite and organic solar cells. Reducing the curing temperature of ZnO layer to below 200 oC is an essential requirement to reduce the cell fabrication cost enabled by large-scale processes such as ink-jet printing, spin coating or roll-roll printing. Herein, we present a novel water-based ZnO precursor stabilized with labile NH3, which allow us to spin coat crystalline ZnO thin films with temperatures below 200 oC. Thin film transistors (TFTs) and diode-type quantum dot solar cells (QD SCs) were fabricated using ZnO as electron conduction layer.  In the QD SCs, a p-type 1,2-ethylenedithiol treated PbS QDs with a bandgap of 1.4 eV was spin-coated on top of ZnO layer by a layer-by-layer solid state ligand exchange process. Electron mobility of ZnO was about 0.1 cm2V-1s-1 as determined from TFT measurements. Power conversion efficiency of solar cells: FTO/ZnO/PbS/Au-Ag was 3.0% under AM1.5 irradiation conditions. The possibility of deposition of ZnO at low temperatures demonstrated herein is of important for solution processed electronic and optoelectronic devices.  Keywords ZnO, low-temperature, quantum dots, solar cells, TFTs References [1] A. Janotti, A. Janotti, C.G. Van De Walle-fundamental of ZnO as a semiconductor, Reports on Progress in Physics, 72 (2009) 126501.[2] H. You, Y. Lin-investigation of the sol-gel method on the flexible ZnO device, International Journal of Electrochemical Science, 7 (2012) 9085–9094.[3] Y. Lin, C. Hsu, M. Tseng, J. Shyue, F. Tsai-stable and high-performance flexible ZnO thin-film transistors by atomic layer deposition, Applied Materials &Interfaces, 7(40) (2015) 22610–22617.[4] C. Lin, S. Tsai, M. Chang-Spontaneous growth by sol-gel process of low temperature ZnO as cathode buffer layer in flexible inverted organic solar cells, Organic Electronics, 46 (2017) 218-255.[5] H. Park, I. Ryu, J. Kim, S. Jeong, S. Yim, S. Jang-PbS quantum dot solar cells integrated with sol−gel-derived ZnO as an n‑type charge-selective layer, Journal of Physical Chemistry C, 118(2014) 17374−17382.[6] Y. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger-inverted polymer solar cells integrated with a low- temperature-annealed sol-gel-derived ZnO film as an electron transport layer Advanced Materials, 23(2011) 1679–1683.[7] V.A. Online, R. Suriano, C. Bianchi, M. Levi, S. Turri, G. Griffini-the role of sol-gel chemistry in low-temperature formation of ZnO buffer layers for polymer solar cells with improved performance, RSC Advances, 6(2016) 46915-46924.[8] X. D. Mai, J. An, H. Song, J. Jang-inverted Schottky quantum dot solar cells with enhanced carrier extraction and air-stability, Journal of Materials Chemistry A, 2 (2014) 20799–20805.[9] H. Choi, J. Lee, X.D. Mai, M.C. Beard, S.S. Yoon, S. Jeong - supersonically spray-coated colloidal quantum dot ink solar cells, Scientific Report, 7(2017) 622.[10] C.R. Newman, C.D. Frisbie, A. Demetrio, S. Filho, J. Bre- introduction to organic thin film transistors and design of n-channel organic semiconductors, Chemistry Materials, 16(2004) 4436-4451.[11] M. Asad, N. Abdul, Chapter 9: Sol-Gel-Derived Doped ZnO Thin Films: Processing, Properties, and Applications, in Recent Applications in Sol-Gel Synthesis, Edt:C. Usha. InTech, Rijeka, Croatia, 2017. [12] D. Guo, K. Sato, S. Hibino, T. Takeuchi, H. Bessho, K. Kato, Low-temperature preparation of (002)-oriented ZnO thin films by sol–gel method, Thin Solid Films, 550 (2014), 250-258. [13] S. T. Meyers, J. T. Anderson, C. M. Hung, J. Thompson, J. F. Wager, D. A. Keszler, Aqueous Inorganic Inks for Low-Temperature Fabrication of ZnO TFTs, J. Am. Chem. Soc, 130 (2008), 17603-17609.


MRS Advances ◽  
2018 ◽  
Vol 3 (5) ◽  
pp. 269-275 ◽  
Author(s):  
Rajinder Singh Deol ◽  
Meenal Mehra ◽  
Bhaskar Mitra ◽  
Madhusudan Singh

ABSTRACTSputtered lead-free piezoelectric materials like potassium sodium niobate (K1-xNaxNbO3 or KNN) have received significant technological interest in recent years in light of several reports of piezoelectric constants comparable to lead zirconium titanate (PZT). Potential applications include self-powered sensors, actuators, and low acoustic impedance transducers. For large area printed applications, it is vital to develop low-temperature solution processed deposition methods. In this work, sol-gel synthesis of K-rich (70:30) KNN was carried out under an argon atmosphere, using acetate precursors, followed by precipitation of white KNN powder upon careful drying. Powder X-ray diffraction (XRD) scans of the product with a Cu Kα source after calcination revealed a dominant (110) peak, accompanied by smaller (100) and (010) peaks, in agreement with published standard KNN data. The composition of K-rich phase was confirmed using energy dispersive X-ray spectroscopy (EDX). To produce thin films, the sol was spin coated on a surface-treated Au-coated Si substrate, followed by slow annealing to obtain low surface roughness films (RMS roughness ﹤∼10 nm) of thickness ∼200 nm after solvent removal. Atomic force microscopy (AFM) scans revealed an unremarkable amorphous film. However, deposition of the sol on the Au-coated backside of Si wafer under similar processing conditions revealed limited polycrystalline film formation observed using optical profilometry. Thin film XRD measurements of the deposited film reveal orthorhombic phase growth of KNN, though the unannealed film was more amorphous than the calcined KNN film. Preliminary piezoresponse force microscopy (PFM) scans were used to estimate a piezoelectric constant (d33) ∼ 2.7 pC/N, consistent with the general expectation of lower piezoelectric constants for thin sol-gel films. The highest processing temperature used at any step during the deposition process was 90°C, consistent with the applications involving flexible polyimide substrates. This low-temperature thin-film growth suggests a potential route towards integration of large area piezoelectric generators for environmentally-friendly autonomous flexible sensor applications, with better control of phase and composition during the solution-phase deposition of KNN.


Sign in / Sign up

Export Citation Format

Share Document