scholarly journals Development of Fe3O4 integrated polymer/phosphate glass composite scaffolds for bone tissue engineering

2020 ◽  
Vol 1 (9) ◽  
pp. 3466-3475
Author(s):  
Raji Govindan ◽  
Sekar Karthi ◽  
Govindan Suresh Kumar ◽  
Easwaradas Kreedapathy Girija

A multifunctional Fe3O4 integrated polymer/phosphate glass composite scaffold is developed using a freeze drying technique for tissue engineering.

2021 ◽  
Author(s):  
Raji Govindan ◽  
Sekar Karthi ◽  
Govindan Suresh Kumar ◽  
Rajesh K. Vatsa ◽  
Easwaradas Kreedapathy Girija

Correction for ‘Development of Fe3O4 integrated polymer/phosphate glass composite scaffolds for bone tissue engineering’ by Raji Govindan et al., Mater. Adv., 2020, DOI: 10.1039/d0ma00525h.


RSC Advances ◽  
2018 ◽  
Vol 8 (59) ◽  
pp. 33882-33892 ◽  
Author(s):  
Yun Gyeong Kang ◽  
Jie Wei ◽  
Ji Eun Kim ◽  
Yan Ru Wu ◽  
Eun Jin Lee ◽  
...  

A new composite scaffold consisting of mesoporous magnesium–calcium silicate (m_MCS), polycaprolactone (PCL), and polybutylene succinate (PBSu) was manufactured by a rapid prototyping technique, for stem cell-based bone tissue engineering.


2007 ◽  
Vol 80B (2) ◽  
pp. 322-331 ◽  
Author(s):  
G. Georgiou ◽  
L. Mathieu ◽  
D. P. Pioletti ◽  
P.-E. Bourban ◽  
J.-A. E. Månson ◽  
...  

2014 ◽  
Vol 513-517 ◽  
pp. 143-146 ◽  
Author(s):  
Xue Jun Wang ◽  
Tao Lou ◽  
Jing Yang ◽  
Zhen Yang ◽  
Kun Peng He

In this study, a nanofibrous poly (L-lactic acid) (PLLA) scaffold reinforced by Hydroxyapatite (HAP) and β-tricalcium phosphate (β-TCP) was fabricated using the thermally induced phase separation method. The composite scaffold morphology showed a nanofibrous PLLA matrix and evenly distributed β-TCP/HAP particles. The composite scaffold had interconnective micropores and the pore size ranged 2-10 μm. Introducing β-TCP/HAP particles into PLLA matrix significantly improved the mechanical properties of the composite scaffold. In summary, the new composite scaffolds show a great deal promise for use in bone tissue engineering.


2021 ◽  
Author(s):  
Shuqiong Liu ◽  
Wu Xiaoyan ◽  
Jiapeng Hu ◽  
Zhenzeng Wu ◽  
Yuying Zheng

Biomimetic scaffolds loaded with drugs can be applied in bone tissue engineering. In this study, a series of three-dimensional polylactic acid/hydroxyapatite/graphene oxide (PLA/HA/GO) drug-loaded biomimetic composite scaffolds with different concentrations...


2013 ◽  
Vol 796 ◽  
pp. 9-14 ◽  
Author(s):  
Cai Hong Lei ◽  
Xin Xing Feng ◽  
Ya Yang Xu ◽  
Yue Rong Li ◽  
Hai Lin Zhu ◽  
...  

Three-dimensional (3D) mesoporous bioactive glass (MBG) scaffolds were obtained by using the demineralized bone matrix (DBM) and P123 as co-templates through a dip-coating method followed by evaporation induced self-assembly (EISA) process. 3D mesoporous bioactive glass-silk fibroin (MBG/SF) composite scaffolds were prepared by immersing MBG scaffolds into SF solutions with different concentration. Transmission electron microscopy (TEM), field mission scanning electron microscope (FESEM), fourier transform infrared spectroscopy (FT-IR) and wide angle X-ray diffraction (WA-XRD) were used to analyze the inner pore structures, pore sizes, morphologies and composition of the scaffolds. The in vitro bioactivity of the scaffolds was evaluated by soaking in simulated body fluid (SBF). The results showed that the MBG and MBG/SF composite scaffolds with the interconnected macroporous network and mesoporous walls could be obtained by this method. In addition, both the MBG scaffolds and the MBG/SF composite scaffolds have excellent apatite-forming bioactivity. Therefore, this method provides a simple way to prepare scaffolds for bone tissue engineering.


2019 ◽  
Vol 15 ◽  
pp. 294-299 ◽  
Author(s):  
Raghav Soni ◽  
N. Vijay Kumar ◽  
Shibu Chameettachal ◽  
Falguni Pati ◽  
Subha Narayan Rath

Sign in / Sign up

Export Citation Format

Share Document