Preparation and characterisation of a novel polylactic acid/hydroxyapatite/graphene oxide/aspirin drug-loaded biomimetic composite scaffold

2021 ◽  
Author(s):  
Shuqiong Liu ◽  
Wu Xiaoyan ◽  
Jiapeng Hu ◽  
Zhenzeng Wu ◽  
Yuying Zheng

Biomimetic scaffolds loaded with drugs can be applied in bone tissue engineering. In this study, a series of three-dimensional polylactic acid/hydroxyapatite/graphene oxide (PLA/HA/GO) drug-loaded biomimetic composite scaffolds with different concentrations...

2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


2018 ◽  
Vol 32 (10) ◽  
pp. 1392-1405 ◽  
Author(s):  
Ali Deniz Dalgic ◽  
Ammar Z. Alshemary ◽  
Ayşen Tezcaner ◽  
Dilek Keskin ◽  
Zafer Evis

In this study, novel graphene oxide–incorporated silicate-doped nano-hydroxyapatite composites were prepared and their potential use for bone tissue engineering was investigated by developing an electrospun poly(ε-caprolactone) scaffold. Nanocomposite groups were synthesized to have two different ratios of graphene oxide (2 and 4 wt%) to evaluate the effect of graphene oxide incorporation and groups with different silicate-doped nano-hydroxyapatite content was prepared to investigate optimum concentrations of both silicate-doped nano-hydroxyapatite and graphene oxide. Three-dimensional poly(ε-caprolactone) scaffolds were prepared by wet electrospinning and reinforced with silicate-doped nano-hydroxyapatite/graphene oxide nanocomposite groups to improve bone regeneration potency. Microstructural and chemical characteristics of the scaffolds were investigated by X-ray diffraction, Fourier transform infrared spectroscope and scanning electron microscopy techniques. Protein adsorption and desorption on material surfaces were studied using fetal bovine serum. Presence of graphene oxide in the scaffold, dramatically increased the protein adsorption with decreased desorption. In vitro biocompatibility studies were conducted using human osteosarcoma cell line (Saos-2). Electrospun scaffold group that was prepared with effective concentrations of silicate-doped nano-hydroxyapatite and graphene oxide particles (poly(ε-caprolactone) – 10% silicate-doped nano-hydroxyapatite – 4% graphene oxide) showed improved adhesion, spreading, proliferation and alkaline phosphatase activity compared to other scaffold groups.


2018 ◽  
pp. 461-475 ◽  
Author(s):  
Ozan Karaman

The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.


RSC Advances ◽  
2018 ◽  
Vol 8 (59) ◽  
pp. 33882-33892 ◽  
Author(s):  
Yun Gyeong Kang ◽  
Jie Wei ◽  
Ji Eun Kim ◽  
Yan Ru Wu ◽  
Eun Jin Lee ◽  
...  

A new composite scaffold consisting of mesoporous magnesium–calcium silicate (m_MCS), polycaprolactone (PCL), and polybutylene succinate (PBSu) was manufactured by a rapid prototyping technique, for stem cell-based bone tissue engineering.


2020 ◽  
Vol 1 (9) ◽  
pp. 3466-3475
Author(s):  
Raji Govindan ◽  
Sekar Karthi ◽  
Govindan Suresh Kumar ◽  
Easwaradas Kreedapathy Girija

A multifunctional Fe3O4 integrated polymer/phosphate glass composite scaffold is developed using a freeze drying technique for tissue engineering.


2015 ◽  
Vol 1119 ◽  
pp. 239-244
Author(s):  
Yan Xu ◽  
Jian Pin Zhou ◽  
Zheng Ying Wei ◽  
Li Yan Dang ◽  
Feng Lin Wu

Scaffolds material is the key factor for bone tissue engineering, and construction of the scaffolds is also an important part. Adopting the biocompatible, biodegradable, hydroxyapatite (HAP) and sodium alginate (SA) as the molding material, using three-dimensional printing technology, choosing cross grid filling paths, we manufactured the artificial bones through self-developed 3D printing equipment. Then we measured and analyzed important parameters of the work, and did composite culture experiment. It can be seen that the prepared artificial bone scaffold has good biocompatibility. The paper provides a reference for the study of bone tissue engineering materials.


2021 ◽  
Author(s):  
Xiang Zhang ◽  
Jialei Chen ◽  
Hongren Wang ◽  
Xin Duan ◽  
Feng Gao

Abstract BACKGROUND: Bone defects still pose various challenges in osteology. As one of the treatment options for bone defects, bone tissue engineering requires biomaterials with good biocompatibility and seed cells with good differentiation capacity. This study aimed to fabricate a 3D-printed polylactic acid and hydroxyapatite (PLA/HA) composite scaffold with urine-derived stem cells (USCs) to study its therapeutic effect in a model of skull defect in rats.METHODS: USCs, isolated and extracted from the urine of healthy adult males, were inoculated onto a 3D-printed PLA/HA composite scaffold and a PLA scaffold. Skull defect model rats were randomly divided into three groups (control, PLA, and PLA/HA). Twelve weeks after implanting scaffolds containing USCs into rats with a skull defect, the therapeutic efficacy was evaluated by real-time PCR, micro-CT, histology, and immunohistochemistry.RESULTS: The 3D-printed PLA/HA composite scaffold had good mechanical properties and porosity. The adhesion and proliferation of USCs on scaffolds also demonstrated excellent biocompatibility. PLA and PLA/HA containing USCs promoted bone regeneration in the defect area, supported by the general observation and CT images at 12 weeks after treatment, with coverage of 74.6%±1.9% and 96.7%±1.6%, respectively. Immunohistochemical staining showed a progressive process of new bone formation on PLA/HA scaffolds containing USCs at the defect site compared to that in PLA and control groups.CONCLUSION: The 3D-printed PLA/HA composite scaffold with USCs was successfully applied to the skull defect in rats. Under the linkage of the scaffold, the proliferation, differentiation, and osteogenesis expression of USCs were promoted near the bone defect area. These findings demonstrated broad application prospects of PLA/HA scaffolds with USCs in bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document