scholarly journals Formamide iodide: A new cation additive for inhibiting δ-phase formation of formamidinium lead iodide perovskite

2021 ◽  
Author(s):  
Itaru Raifuku ◽  
Yu-Hsien Chiang ◽  
Cheng-Hung Hou ◽  
Ming-Hsien Li ◽  
Chen-Fu Lin ◽  
...  

Perovskite solar cells (PSCs) employing organic-inorganic hybrid lead perovskite have attracted much attention as promising next generation solar cells because of their low fabrication cost and extremely high power conversion...

Author(s):  
Eun-Cheol Lee ◽  
Zhihai Liu

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we improved the...


Author(s):  
Wenbin Guo ◽  
Guanhua Ren ◽  
Wenbin Han ◽  
Yanyu Deng ◽  
Wei Wu ◽  
...  

Organic-inorganic hybrid perovskite solar cells (PSCs) have made unprecedented progress in the past ten years, the power conversion efficiency of which increased from 3.8% in 2009 to 25.5% in 2019....


Author(s):  
Rui He ◽  
Shengqiang Ren ◽  
Cong Chen ◽  
Zongjin Yi ◽  
Yi Luo ◽  
...  

The past decade has witnessed rapid development of perovskite solar cells (PSCs), the record power conversion efficiency (PCE) of which has been rapidly boosted from the initial 3.8% to a...


Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 83 ◽  
Author(s):  
Edward Guangqing Tai ◽  
Ryan Taoran Wang ◽  
Jason Yuanzhe Chen ◽  
Gu Xu

Organic-inorganic hybrid halide perovskite solar cells (PSCs) have been a trending topic in recent years. Significant progress has been made to increase their power conversion efficiency (PCE) to more than 20%. However, the poor stability of PSCs in both working and non-working conditions results in rapid degradation through multiple environmental erosions such as water, heat, and UV light. Attempts have been made to resolve the rapid-degradation problems, including formula changes, transport layer improvements, and encapsulations, but none of these have effectively resolved the dilemma. This paper reports our findings on adding inorganic films as surface-passivation layers on top of the hybrid perovskite materials, which not only enhance stability by eliminating weak sites but also prevent water penetration by using a water-stable layer. The surface-passivated hybrid perovskite layer indicates a slight increase of bandgap energy (Eg=1.76 eV), compared to the original methylammonium lead iodide (MAPbI3, Eg=1.61 eV) layer, allowing for more stable perovskite layer with a small sacrifice in the photoluminescence property, which represents a lower charge diffusion rate and higher bandgap energy. Our finding offers an alternative approach to resolving the low stability issue for PSC fabrication.


2015 ◽  
Vol 3 (38) ◽  
pp. 19288-19293 ◽  
Author(s):  
Xin Xu ◽  
Huiyin Zhang ◽  
Jiangjian Shi ◽  
Juan Dong ◽  
Yanhong Luo ◽  
...  

A TiO2/ZnO bilayer was applied in planar perovskite solar cells to achieve high power-conversion efficiency more than 17%.


2021 ◽  
Vol 52 (5) ◽  
pp. 16-19
Author(s):  
Annalisa Bruno

In the last decade perovskite solar cells have shown remarkable improvements in power conversion efficiency which have driven the interest to commercialise the perovskite technology. Here, I will present an overview of our recent works focused on the development and the understanding of highly efficient co-evaporated perovskite solar cells with excellent thermal stability and remarkable upscalability. Our works demonstrate the compatibility of perovskite technology with consolidated industrial processes and its potential for next-generation photovoltaics on the market


2017 ◽  
Vol 5 (48) ◽  
pp. 12752-12757 ◽  
Author(s):  
J. Zhang ◽  
L. J. Xu ◽  
P. Huang ◽  
Y. Zhou ◽  
Y. Y. Zhu ◽  
...  

Planar perovskite solar cells based on CMO as the HTM showed a high power conversion efficiency of 15.92%.


Sign in / Sign up

Export Citation Format

Share Document