scholarly journals The correlation between phase transition and photoluminescence properties of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals

2020 ◽  
Vol 2 (10) ◽  
pp. 4390-4394 ◽  
Author(s):  
Jun Yi ◽  
Xueying Ge ◽  
Exian Liu ◽  
Tong Cai ◽  
Chujun Zhao ◽  
...  

We report a correlation between the structural phase transition of CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) and their temperature dependent steady-state photoluminescence (PL) and time-resolved PL (TRPL).

Author(s):  
Kamila Maciejewska ◽  
Marcin Szalkowski ◽  
Artur Bednarkiewicz ◽  
Lukasz Marciniak

The development of highly sensitive luminescent thermometer requires deep understanding of the correlation between structural properties of the host material with temperature-dependent luminescent properties of lanthanide emitters embedded in these...


RSC Advances ◽  
2017 ◽  
Vol 7 (50) ◽  
pp. 31433-31440 ◽  
Author(s):  
Rui Zhao ◽  
Tianye Yang ◽  
Yang Luo ◽  
Mingyan Chuai ◽  
Xiaoxin Wu ◽  
...  

Eu dopant increases the phase transition pressure from wurtzite to rocksalt structure compared with CdS nanoparticles. The PL peaks of the Eu3+ ions can used as pressure probe after the quenching of the PL peaks of rocksalt structure CdS.


2014 ◽  
Vol 118 (39) ◽  
pp. 22739-22745 ◽  
Author(s):  
Chen Gong ◽  
Quanjun Li ◽  
Ran Liu ◽  
Yuan Hou ◽  
Jinxian Wang ◽  
...  

2013 ◽  
Vol 15 (45) ◽  
pp. 19925 ◽  
Author(s):  
Chen Gong ◽  
Quanjun Li ◽  
Ran Liu ◽  
Yuan Hou ◽  
Jinxian Wang ◽  
...  

2018 ◽  
Author(s):  
Alyssa Henderson ◽  
Lianyang Dong ◽  
Sananda Biswas ◽  
Hannah Revell ◽  
Yan Xin ◽  
...  

The nature of the structural phase transition in the quantum magnets barlowite, Cu4(OH)6FBr, and claringbullite, Cu4(OH)6FCl was investigated. These materials consist of parallel-stacked Cu2+ kagome layers, separated by planes that contain Cu2+ cations and halide anions. The structural transition is of an order-disorder type, where at ambient temperature the interlayer Cu2+ ions are disordered over three equivalent positions. In barlowite, the dynamic disorder becomes static as the temperature is decreased, resulting in a lowering of the overall symmetry from hexagonal P63/mmc to orthorhombic. The dynamic disorder in claringbullite persists to lower temperatures, with a transition to orthorhombic space group Pnma observed in some samples. Ab initio density functional theory calculations explain this temperature-dependent structural phase transition and provide additional insights regarding the differences between these two materials.


2018 ◽  
Author(s):  
Alyssa Henderson ◽  
Lianyang Dong ◽  
Sananda Biswas ◽  
Hannah Revell ◽  
Yan Xin ◽  
...  

The nature of the structural phase transition in the quantum magnets barlowite, Cu4(OH)6FBr, and claringbullite, Cu4(OH)6FCl was investigated. These materials consist of parallel-stacked Cu2+ kagome layers, separated by planes that contain Cu2+ cations and halide anions. The structural transition is of an order-disorder type, where at ambient temperature the interlayer Cu2+ ions are disordered over three equivalent positions. In barlowite, the dynamic disorder becomes static as the temperature is decreased, resulting in a lowering of the overall symmetry from hexagonal P63/mmc to orthorhombic. The dynamic disorder in claringbullite persists to lower temperatures, with a transition to orthorhombic space group Pnma observed in some samples. Ab initio density functional theory calculations explain this temperature-dependent structural phase transition and provide additional insights regarding the differences between these two materials.


Sign in / Sign up

Export Citation Format

Share Document