Reusable, few-layered-MoS2 nanosheets/graphene hybrid on cellulose paper for superior adsorption of methylene blue dye

2020 ◽  
Vol 44 (14) ◽  
pp. 5489-5500 ◽  
Author(s):  
Arthi Gopalakrishnan ◽  
Satyam Pratap Singh ◽  
Sushmee Badhulika

High efficient methylene blue adsorption by MoS2 micro-flowers on graphene-cellulose paper.

2019 ◽  
Vol 04 ◽  
Author(s):  
Sachin Dev ◽  
Man Singh

Introduction: The Metal Sulfide Nanoparticles Doped Graphene Oxide Sheets Have Been Studied And Were Used To Adsorb Fluorescent Methylene Blue Dye. Such Mechanism Efficiently Reduces The Dyes And Their Fluorescent Pollutants Through The Positive And Negative Holes. The Metal Sulfide Doped Graphene Oxide Could Be A Most Potential Route To Reduce From Fluorescent To Non-Fluorescent Species To Prevent The Global Warming And Other Pollution Being Caused By Them. Objectives: This Study Has Been To Strengthen And Widen The Applications Of Negative And Positive Holes Quick Formation At A Negligible Energy Barrier. Metal Sulfide Nanoparticles Were Doped With Graphene Oxide To Further Strengthen The Semiconducting And To Fastened The Rate Of Adsorption Of Methylene Blue Dye. Methods: Graphite Flakes Were Oxidized To Graphite Oxide With High Yield. The Graphite Oxide Was Sonicated In Water To Obtain Graphene Oxide And Doped With Metal Sulfide Nanoparticles In Situ. The Samples Were Characterized With High End Instruments And Used For Adsorption. Results: The Metal Sulfide Nanoparticles Were Successfully Doped With Graphene Oxide. The Ftir And Xps Spectra Infer Doping Of Metal Sulfide Nanoparticle In Graphene Oxide. That Enhanced Methylene Blue Adsorption Upto 97%. Conclusion: The Common Adsorption Effect Of Methylene Blue With Bare Graphene Oxide And Metal Sulfide Nanoparticles Doped Graphene Oxide Were Studied In This Paper. The Methylene Blue Adsorption Was Maximum (97%) By Cadmium Sulfide Doped Graphene Oxide Compared To Bare Graphene Oxide (87%), Nickel Sulfide Doped Graphene Oxide (79%), And Zinc Sulfide Doped Graphene Oxide (89%). The Metal Sulfide Nanoparticles Have Successfully Enhanced A Semiconductor Mechanism Of Graphene Oxide Especially With 3d And 4d10 Of Cds.


RSC Advances ◽  
2015 ◽  
Vol 5 (8) ◽  
pp. 6111-6122 ◽  
Author(s):  
Naim Saad ◽  
Mazen Al-Mawla ◽  
Elias Moubarak ◽  
Mazen Al-Ghoul ◽  
Houssam El-Rassy

Surface-functionalized silica aerogels and alcogels preparedviaa two-step sol–gel process through the combination of different silicon precursors were used in the adsorption of methylene blue dye molecules from aqueous media.


Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


2018 ◽  
Vol 8 (3) ◽  
pp. 502-513
Author(s):  
Saravanan Narayanan ◽  
Rathika Govindasamy

2021 ◽  
Vol 170 ◽  
pp. 375-389
Author(s):  
Alexandra Cemin ◽  
Fabrício Ferrarini ◽  
Matheus Poletto ◽  
Luis R. Bonetto ◽  
Jordana Bortoluz ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1985
Author(s):  
Irina Plesco ◽  
Vladimir Ciobanu ◽  
Tudor Braniste ◽  
Veaceslav Ursaki ◽  
Florian Rasch ◽  
...  

A new type of photocatalyst is proposed on the basis of aero-β-Ga2O3, which is a material constructed from a network of interconnected tetrapods with arms in the form of microtubes with nanometric walls. The aero-Ga2O3 material is obtained by annealing of aero-GaN fabricated by epitaxial growth on ZnO microtetrapods. The hybrid structures composed of aero-Ga2O3 functionalized with Au or Pt nanodots were tested for the photocatalytic degradation of methylene blue dye under UV or visible light illumination. The functionalization of aero-Ga2O3 with noble metals results in the enhancement of the photocatalytic performances of bare material, reaching the performances inherent to ZnO while gaining the advantage of the increased chemical stability. The mechanisms of enhancement of the photocatalytic properties by activating aero-Ga2O3 with noble metals are discussed to elucidate their potential for environmental applications.


Sign in / Sign up

Export Citation Format

Share Document