Development of light-emitting liquid-crystalline polymers with a pentafluorinated bistolane-based luminophore

2020 ◽  
Vol 44 (15) ◽  
pp. 5684-5691 ◽  
Author(s):  
Shigeyuki Yamada ◽  
Akira Mitsuda ◽  
Kaoru Adachi ◽  
Mitsuo Hara ◽  
Tsutomu Konno

Light-emitting liquid-crystalline polymers showing PL in the pristine solid state can control their PL color from blue to light-blue via a thermal phase transition to LC phases, which originates from a dynamic change of aggregated structures.

Author(s):  
Linda C. Sawyer

Recent liquid crystalline polymer (LCP) research has sought to define structure-property relationships of these complex new materials. The two major types of LCPs, thermotropic and lyotropic LCPs, both exhibit effects of process history on the microstructure frozen into the solid state. The high mechanical anisotropy of the molecules favors formation of complex structures. Microscopy has been used to develop an understanding of these microstructures and to describe them in a fundamental structural model. Preparation methods used include microtomy, etching, fracture and sonication for study by optical and electron microscopy techniques, which have been described for polymers. The model accounts for the macrostructures and microstructures observed in highly oriented fibers and films.Rod-like liquid crystalline polymers produce oriented materials because they have extended chain structures in the solid state. These polymers have found application as high modulus fibers and films with unique properties due to the formation of ordered solutions (lyotropic) or melts (thermotropic) which transform easily into highly oriented, extended chain structures in the solid state.


Soft Matter ◽  
2014 ◽  
Vol 10 (41) ◽  
pp. 8224-8228 ◽  
Author(s):  
Min-Jun Gim ◽  
Gohyun Han ◽  
Suk-Won Choi ◽  
Dong Ki Yoon

We have investigated dramatic changes in the thermal phase transition of a liquid-crystalline (LC) blue phase (BP) consisting of bent-core nematogen and chiral dopants under various boundary conditions during cooling from the isotropic phase.


2012 ◽  
Vol 1403 ◽  
Author(s):  
Christain Melchert ◽  
M. Behl ◽  
A. Lendlein

ABSTRACTThe control of phase transition behavior in liquid crystalline polymers could enable potential application in the field of actuators and sensors by enabling a higher actuator performance of liquid crystalline elastomers (LCE). In this context the phase transition behavior of siloxane based liquid crystalline copolymers synthesized from 1,1,3,3-tetramethyldisiloxane, 2-methyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone (M-MeHq), and 2-tert-butyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone (M-tBHq) was explored. The selected monomers provided different thermal stabilities of the nematic phase, while the non-flexible siloxane spacer suppressed a smectic phase. The mesogenic properties were studied by means of differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and wide angle X-ray scattering (WAXS). With increasing fraction of M-MeHq the nematic phase of the copolymer was stabilized and a tailoring of relatively low TNI was achieved.


Sign in / Sign up

Export Citation Format

Share Document