Radical sensitivity and selectivity in the electrochemical sensing of cadmium ions in water by polyaniline-derived nitrogen-doped graphene quantum dots

2021 ◽  
Vol 45 (1) ◽  
pp. 110-122
Author(s):  
S. Saisree ◽  
R. Aswathi ◽  
J. S. Arya Nair ◽  
K. Y. Sandhya

In the present work, the sensing capability of nitrogen-doped graphene quantum dots (N-GQDs) was explored for the first time toward hazardous heavy metal ions and they were found to be able to selectively detect cadmium ions (Cd(ii)).

2015 ◽  
Vol 87 (23) ◽  
pp. 11803-11811 ◽  
Author(s):  
Zhewei Cai ◽  
Fumin Li ◽  
Ping Wu ◽  
Lijuan Ji ◽  
Hui Zhang ◽  
...  

2015 ◽  
Vol 39 (10) ◽  
pp. 8114-8120 ◽  
Author(s):  
Shufan Chen ◽  
Yu Song ◽  
Yang Li ◽  
Yunling Liu ◽  
Xingguang Su ◽  
...  

Sulfite is detected based on the N-GQDs for the first time and the proposed nanosensor is simple and highly selective.


2021 ◽  
Vol 623 ◽  
pp. 119077
Author(s):  
Rumwald Leo G. Lecaros ◽  
Reincess E. Valbuena ◽  
Lemmuel L. Tayo ◽  
Wei-Song Hung ◽  
Chien-Chieh Hu ◽  
...  

2021 ◽  
Author(s):  
Hemalatha Kuzhandaivel ◽  
Sornalatha Manickam ◽  
Suresh Kannan Balasingam ◽  
Manik Clinton Franklin ◽  
Hee-Je Kim ◽  
...  

Sulfur and nitrogen-doped graphene quantum dots/polyaniline nanocomposites were synthesized and their electrochemical charge storage properties were tested for supercapacitor applications.


ACS Omega ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 2167-2176
Author(s):  
Rania Adel ◽  
Shaker Ebrahim ◽  
Azza Shokry ◽  
Moataz Soliman ◽  
Marwa Khalil

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 140
Author(s):  
Madison Frieler ◽  
Christine Pho ◽  
Bong Han Lee ◽  
Hana Dobrovolny ◽  
Giridhar R. Akkaraju ◽  
...  

With 18 million new cases diagnosed each year worldwide, cancer strongly impacts both science and society. Current models of cancer cell growth and therapeutic efficacy in vitro are time-dependent and often do not consider the Emax value (the maximum reduction in the growth rate), leading to inconsistencies in the obtained IC50 (concentration of the drug at half maximum effect). In this work, we introduce a new dual experimental/modeling approach to model HeLa and MCF-7 cancer cell growth and assess the efficacy of doxorubicin chemotherapeutics, whether alone or delivered by novel nitrogen-doped graphene quantum dots (N-GQDs). These biocompatible/biodegradable nanoparticles were used for the first time in this work for the delivery and fluorescence tracking of doxorubicin, ultimately decreasing its IC50 by over 1.5 and allowing for the use of up to 10 times lower doses of the drug to achieve the same therapeutic effect. Based on the experimental in vitro studies with nanomaterial-delivered chemotherapy, we also developed a method of cancer cell growth modeling that (1) includes an Emax value, which is often not characterized, and (2), most importantly, is measurement time-independent. This will allow for the more consistent assessment of the efficiency of anti-cancer drugs and nanomaterial-delivered formulations, as well as efficacy improvements of nanomaterial delivery.


Sign in / Sign up

Export Citation Format

Share Document