scholarly journals Organic synthesis of high added value molecules with MOF catalysts

2020 ◽  
Vol 18 (40) ◽  
pp. 8058-8073
Author(s):  
Nuria Martín ◽  
Francisco G. Cirujano

Recent examples of organic synthesis of fine chemicals and pharmaceuticals in confined spaces of MOFs are highlighted and compared with silica-based ordered porous solids, such as zeolites or mesoporous (organo)silica.

Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Ivan Bassanini ◽  
Erica Elisa Ferrandi ◽  
Sergio Riva ◽  
Daniela Monti

Laccases are multicopper oxidases, which have been widely investigated in recent decades thanks to their ability to oxidize organic substrates to the corresponding radicals while producing water at the expense of molecular oxygen. Besides their successful (bio)technological applications, for example, in textile, petrochemical, and detoxifications/bioremediations industrial processes, their synthetic potentialities for the mild and green preparation or selective modification of fine chemicals are of outstanding value in biocatalyzed organic synthesis. Accordingly, this review is focused on reporting and rationalizing some of the most recent and interesting synthetic exploitations of laccases. Applications of the so-called laccase-mediator system (LMS) for alcohol oxidation are discussed with a focus on carbohydrate chemistry and natural products modification as well as on bio- and chemo-integrated processes. The laccase-catalyzed Csp2-H bonds activation via monoelectronic oxidation is also discussed by reporting examples of enzymatic C-C and C-O radical homo- and hetero-couplings, as well as of aromatic nucleophilic substitutions of hydroquinones or quinoids. Finally, the laccase-initiated domino/cascade synthesis of valuable aromatic (hetero)cycles, elegant strategies widely documented in the literature across more than three decades, is also presented.


2021 ◽  
Vol 15 (1) ◽  
pp. 71-81
Author(s):  
Ashish Bhatt ◽  
Darshankumar Prajapati ◽  
Akshaya Gupte

Nitriles are organic compounds consisting of −C≡N group. They are frequently known to occur in nature and as intermediate by-products and waste products of various chemical, pharmaceutical, and agricultural industries. They are also found in fruit pits, cabbage, cauliflower, and sprouts, which are released upon hydrolysis. Nitrile converting enzymes like nitrilases have been extracted from microorganisms and plants. Nitrilase-mediated biocatalysis reactions have continuously aroused widespread interest to scientists and entrepreneurs in organic synthesis. Nitrile converting biocatalysts (Nitrilases) are now of substantial industrial interest from the perspective of treating toxic nitrile and cyanide-containing compounds. Nitrile degrading enzymes generally consist of nitrilases and amidases. The aim of the current review is to summarize the recent advancements on regioselective nitrilases concerning their fundamental researches and their application in the synthesis of series of high-value fine chemicals and pharmaceuticals. The present review also focuses on the utility of nitrile converting enzyme, sources, properties, classification, structure, and applications as well.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
James D. Wuest

Abstract For millennia, humans have exploited the special properties of porous materials. Advances in recent years have yielded a new generation of finely structured porous materials that allow processes to be controlled at the molecular level. These materials are built by a strategy of modular construction, using molecular components designed to position their neighbors in ways that create predictable voids.


2000 ◽  
Vol 72 (7) ◽  
pp. 1233-1246 ◽  
Author(s):  
Roger A. Sheldon

The key to waste minimization in fine chemicals manufacture is the widespread substitution of classical organic syntheses employing stoichiometric amounts of inorganic reagents with cleaner, catalytic alternatives. The E factors (by waste per kg product) of chemical processes increase dramatically on going downstream from bulk to fine chemicals and pharmaceuticals, mainly owing to the use of "stoichiometric" methods. The concept of atom efficiency is a useful tool for rapid evaluation of the amount of waste generated by alternative processes. The general theme of atom-efficient, catalytic processes is illustrated with industrially relevant examples. These include catalysis by solid acids and bases, catalytic reductions and oxidations, catalytic C_C bond formation, asymmetric catalysis, biocatalysis, and catalysis in novel media (aqueous and fluorous biphasic systems, supercritical fluids, and ionic liquids).


Sign in / Sign up

Export Citation Format

Share Document