carbohydrate chemistry
Recently Published Documents


TOTAL DOCUMENTS

908
(FIVE YEARS 33)

H-INDEX

54
(FIVE YEARS 3)

Synlett ◽  
2021 ◽  
Author(s):  
Mikael Bols ◽  
Tobias Gylling Frihed ◽  
Martin Jæger Pedersen ◽  
Christian Marcus Pedersen

AbstractSilicon has been used in carbohydrate chemistry for half a century, but mostly as a protective group for sugar alcohols. Recently, the use of silicon has expanded to functionalization via C–H activation, conformational arming of glycosyl donors, and conformational alteration of carbohydrates. Silicon has proven useful as more than a protective group and during the last one and a half decades we have demonstrated how it influences both the reactivity of glycosyl donors and stereochemical outcome of glycosylations. Silicon can also be attached directly to the sugar C-backbone, which has even more pronounced effects on the chemistry and properties of the molecules. In this Account, we will give a tour through our work involving silicon and carbohydrates.1 Introduction2 Conformational Arming of Glycosyl Donors with Silyl Groups3 Silyl Protective Groups for Tethering Glycosyl Donors4. Si–C Glycosides via C–H Activation4.1 C–H Activation and Oxidation of Methyl 6-Deoxy-l-glycosides4.2 Synthesis of All Eight 6-Deoxy-l-sugars4.3 Synthesis of All Eight l-Sugars by C–H Activation4.4 Modification of the Oxasilolane Ring5 C–Si in Glycosyl Donors – Activating or Not?6 Si–C-Substituted Pyranosides7 Perspective


2021 ◽  
Author(s):  
Paul V Murphy ◽  
Namakkal G. Ramesh

2021 ◽  
Author(s):  
Michael Martin Nielsen ◽  
Thomas Holmstrøm ◽  
Christian Marcus Pedersen

Despite many years of invention, the field of carbohydrate chemistry remains rather inaccessible to non-specialists, which limits the scientific impact and reach of the discoveries made in the field. Aiming to increase the availability of stereoselective glycosylation chemistry for non-specialists, we have discovered that several commercially available pyrylium salts catalyze stereospecific O-glycosylations of a wide range of phenols and alkyl alcohols. This catalytic reaction utilizes trichloroacetimidates, an easily accessible and synthetically proven electrophile, takes place under air and only initiates when all three reagents are mixed, which should provide better reproducibility by non-specialists. The reaction is stereospecific, resulting in β-specific glycosylations from α-trichloroacetimidates, whilst an α-selective glycosylation proceeds from β-trichloroacetimidates. A mechanistic study revealed that the reaction likely proceeds via an SN2-like substitution on the protonated electrophile.


2021 ◽  
Vol 25 ◽  
Author(s):  
Rekha Sangwan ◽  
Pintu Kumar Mandala

: In carbohydrate chemistry, the synthesis of complex saccharides with well-defined structures is the most formidable process as it is quite strenuous to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conveniently accessed through chemical syntheses. This review mainly focuses on the methodologies for one-pot glycosylation into the complex glycans from the non-reducing end to reducing end and vice versa, orthogonal, preactivation based, photochemical as well as hybrid one-pot glycosylation. The main goal of this review is to be able to rapidly synthesize biologically relevant glycans in carbohydrates that can be implemented to research in carbohydrate-based vaccine development, diagnostics, as well as drug discovery.


2021 ◽  
Author(s):  
Eric Miller ◽  
Maciej Walczak

Stereoselective reactions at the anomeric carbon constitute the cornerstone of preparative carbohydrate chemistry. Here, we report the synthesis of axial C1 trifluoroborates and stereoselective C-arylation and etherification reactions under photoredox conditions. These reactions are characterized by high anomeric selectivities for 2-deoxysugars and broad substrate scope (24 examples), including disaccharides and trifluoroborates with free hydroxyl groups. Computational studies show that high axial selectivities for these reactions originate from a combination of kinetic anomeric effect of the intermediate C1 radical and stereoelectronic stabilization of Ni(III) through the metallo-anomeric effect. Taken together, this new class of carbohydrate reagents adds the palette of anomeric nucleophile reagents suitable for efficient installation C-C and Cheteroatom bonds.


2021 ◽  
Author(s):  
Eric Miller ◽  
Maciej Walczak

Stereoselective reactions at the anomeric carbon constitute the cornerstone of preparative carbohydrate chemistry. Here, we report the synthesis of axial C1 trifluoroborates and stereoselective C-arylation and etherification reactions under photoredox conditions. These reactions are characterized by high anomeric selectivities for 2-deoxysugars and broad substrate scope (24 examples), including disaccharides and trifluoroborates with free hydroxyl groups. Computational studies show that high axial selectivities for these reactions originate from a combination of kinetic anomeric effect of the intermediate C1 radical and stereoelectronic stabilization of Ni(III) through the metallo-anomeric effect. Taken together, this new class of carbohydrate reagents adds the palette of anomeric nucleophile reagents suitable for efficient installation C-C and Cheteroatom bonds.


2021 ◽  
Author(s):  
Paul Kosma ◽  
Tanja Wrodnigg ◽  
Arnold Stütz

2021 ◽  
Vol 13 (1) ◽  
pp. 81-108 ◽  
Author(s):  
C. Arnosti ◽  
M. Wietz ◽  
T. Brinkhoff ◽  
J.-H. Hehemann ◽  
D. Probandt ◽  
...  

Polysaccharides are major components of macroalgal and phytoplankton biomass and constitute a large fraction of the organic matter produced and degraded in the ocean. Until recently, however, our knowledge of marine polysaccharides was limited due to their great structural complexity, the correspondingly complicated enzymatic machinery used by microbial communities to degrade them, and a lack of readily applied means to isolate andcharacterize polysaccharides in detail. Advances in carbohydrate chemistry, bioinformatics, molecular ecology, and microbiology have led to new insights into the structures of polysaccharides, the means by which they are degraded by bacteria, and the ecology of polysaccharide production and decomposition. Here, we survey current knowledge, discuss recent advances, and present a new conceptual model linking polysaccharide structural complexity and abundance to microbially driven mechanisms of polysaccharide processing. We conclude by highlighting specific future research foci that will shed light on this central but poorly characterized component of the marine carbon cycle.


2021 ◽  
pp. P010-P014
Author(s):  
Jean-Pierre Praly ◽  
Grahame Mackenzie ◽  
Yves Queneau

Sign in / Sign up

Export Citation Format

Share Document