A Comprehensive review of the Caged Phosphines: Synthesis, Catalytic Applications and Future Perspective

Author(s):  
Anant R. Kapdi ◽  
Shatrughn Bhilare ◽  
Harshita Shet ◽  
Udaysinh Parmar

Phosphines have played an important and activating role in the rapid rise of the transition metal-catalysed processes and with the possibility of fine-tuning the electronic and steric properties of these...

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 452
Author(s):  
Michalis Konsolakis ◽  
Maria Lykaki

The rational design and fabrication of highly-active and cost-efficient catalytic materials constitutes the main research pillar in catalysis field. In this context, the fine-tuning of size and shape at the nanometer scale can exert an intense impact not only on the inherent reactivity of catalyst’s counterparts but also on their interfacial interactions; it can also opening up new horizons for the development of highly active and robust materials. The present critical review, focusing mainly on our recent advances on the topic, aims to highlight the pivotal role of shape engineering in catalysis, exemplified by noble metal-free, CeO2-based transition metal catalysts (TMs/CeO2). The underlying mechanism of facet-dependent reactivity is initially discussed. The main implications of ceria nanoparticles’ shape engineering (rods, cubes, and polyhedra) in catalysis are next discussed, on the ground of some of the most pertinent heterogeneous reactions, such as CO2 hydrogenation, CO oxidation, and N2O decomposition. It is clearly revealed that shape functionalization can remarkably affect the intrinsic features and in turn the reactivity of ceria nanoparticles. More importantly, by combining ceria nanoparticles (CeO2 NPs) of specific architecture with various transition metals (e.g., Cu, Fe, Co, and Ni) remarkably active multifunctional composites can be obtained due mainly to the synergistic metalceria interactions. From the practical point of view, novel catalyst formulations with similar or even superior reactivity to that of noble metals can be obtained by co-adjusting the shape and composition of mixed oxides, such as Cu/ceria nanorods for CO oxidation and Ni/ceria nanorods for CO2 hydrogenation. The conclusions derived could provide the design principles of earth-abundant metal oxide catalysts for various real-life environmental and energy applications.


2006 ◽  
Vol 418 (1-2) ◽  
pp. 21-26 ◽  
Author(s):  
Shengming Liu ◽  
Pavel Poplaukhin ◽  
Errun Ding ◽  
Christine E. Plecnik ◽  
Xuenian Chen ◽  
...  

ChemCatChem ◽  
2011 ◽  
Vol 3 (9) ◽  
pp. 1384-1406 ◽  
Author(s):  
Andreas Winter ◽  
George R. Newkome ◽  
Ulrich S. Schubert

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Mao-Yu Zhang ◽  
Jin-Jian Lu ◽  
Liang Wang ◽  
Zi-Chao Gao ◽  
Hao Hu ◽  
...  

Monoclonal antibodies (mAbs) have become increasingly important as human therapeutic agents. Yet, current research concentrates on technology itself and pays attention to developed countries. This paper aims to provide a comprehensive review of mAbs development in China through systematic analysis of drug registry, patent applications, clinical trials, academic publication, and ongoing R&D projects. The trends in therapeutic areas and industrialization process are also highlighted. Development and research trends of mAbs are analyzed to provide a future perspective of mAbs as therapeutic agents in China.


Sign in / Sign up

Export Citation Format

Share Document