scholarly journals Three-dimensional directional nerve guide conduits fabricated by dopamine-functionalized conductive carbon nanofibre-based nanocomposite ink printing

RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 40351-40364
Author(s):  
Shadi Houshyar ◽  
Mamatha M. Pillai ◽  
Tanushree Saha ◽  
G. Sathish-Kumar ◽  
Chaitali Dekiwadia ◽  
...  

Directional growth induced by dopamine-functionalized CNF-based nanocomposite ink printing.

2018 ◽  
Author(s):  
Toma Marinov ◽  
Liang Yuchi ◽  
Dayo O. Adewole ◽  
D. Kacy Cullen ◽  
Reuben H. Kraft

AbstractMicro-Tissue Engineered Neural Networks (Micro-TENNs) are living three-dimensional constructs designed to replicate the neuroanatomy of white matter pathways in the brain, and are being developed as implantable microtissue for axon tract reconstruction or as anatomically-relevant in vitro experimental platforms. Micro-TENNs are composed of discrete neuronal aggregates connected by bundles of long-projecting axonal tracts within miniature tubular hydrogels. In order to help design and optimize micro-TENN performance, we have created a new computational model including geometric and functional properties. The model is built upon the three-dimensional diffusion equation and incorporates large-scale uni- and bi-directional growth that simulates realistic neuron morphologies. The model captures unique features of 3D axonal tract development that are not apparent in planar outgrowth, and may be insightful for how white matter pathways form during brain development. The processes of axonal outgrowth, branching, turning and aggregation/bundling from each neuron are described through functions built on concentration equations and growth time distributed across the growth segments. Once developed we conducted multiple parametric studies to explore the applicability of the method and conducted preliminary validation via comparisons to experimentally grown micro-TENNs for a range of growth conditions. Using this framework, this model can be applied to study micro-TENN growth processes and functional characteristics using spiking network or compartmental network modeling. This model may be applied to improve our understanding of axonal tract development and functionality, as well as to optimize the fabrication of implantable tissue engineered brain pathways for nervous system reconstruction and/or modulation.


RSC Advances ◽  
2020 ◽  
Vol 10 (72) ◽  
pp. 43960-43961
Author(s):  
Shadi Houshyar ◽  
Mamatha M. Pillai ◽  
Tanushree Saha ◽  
G. Sathish-Kumar ◽  
Chaitali Dekiwadia ◽  
...  

Correction for ’Three-dimensional directional nerve guide conduits fabricated by dopamine-functionalized conductive carbon nanofibre-based nanocomposite ink printing’ by Shadi Houshyar et al., RSC Adv., 2020, 10, 40351–40364, DOI: 10.1039/D0RA06556K.


2021 ◽  
Author(s):  
Katarzyna Retzer

Plant cell properties are defined by its proteome and metabolome, which depend on the genetic background together with environmental conditions. Mechanical responses of individual cells to plant internal and external stimuli modulate organ movement and ensure thereby plant survival as sessile organism in a constantly changing environment. The root is a complex, three-dimensional object, which continuously modifies its growth path. Autonomous and paratonic root movements are both orchestrated by different signaling pathways, whereby auxin modulated directional growth adaptations, including gravitropic response, were already subject of manifold studies. But we still know very little about how cells adapt upon gravitropic stimulus to initiate curvature establishment, which is required to align root tip growth again along the gravitropic vector. This manuscript shows first insights into cell file movements upon gravitropic stimulus of Arabidopsis thaliana roots that initiate curvature establishment. The roots were grown shaded from light and without exogenous sucrose supplementation, both growth conditions that are known to negatively interfere with directed root growth, which allowed a more uniform tracking of root bending by using a confocal microscope with vertical stage.


2017 ◽  
Author(s):  
Bandan Chakrabortty ◽  
Ben Scheres ◽  
Bela Mulder

AbstractPlant morphogenesis is strongly dependent on the directional growth and the subsequent oriented division of individual cells. It has been shown that the plant cortical microtubule array plays a key role in controlling both these processes. This ordered structure emerges as the collective result of stochastic interactions between large numbers of dynamic microtubules. To elucidate this complex self-organization process a number of analytical and computational approaches to study the dynamics of cortical microtubules have been proposed. To date, however, these models have been restricted to 2D planes or geometrically simple surfaces in 3D, which strongly limits their applicability as plant cells display a wide variety of shapes. This limitation is even more acute, as both local as well as global geometrical features of cells are expected to influence the overall organization of the array. Here we describe a framework for efficiently simulating microtubule dynamics on triangulated approximations of arbitrary three dimensional surfaces. This allows the study of microtubule array organization on realistic cell surfaces obtained by segmentation of microscopic images. We validate the framework against expected or known results for the spherical and cubical geometry. We then use it to systematically study the individual contributions of global geometry, edge-induced catastrophes and cell face-induced stability to array organization in a cuboidal geometry. Finally, we apply our framework to analyze the highly non-trivial geometry of leaf pavement cells of Nicotiana benthamiana and Hedera helix. We show that our simulations can predict multiple features of the array structure in these cells, revealing, among others, strong constraints on the orientation of division planes.


1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document