scholarly journals Focusing, sorting, and separating microplastics by serial faradaic ion concentration polarization

2020 ◽  
Vol 11 (21) ◽  
pp. 5547-5558 ◽  
Author(s):  
Collin D. Davies ◽  
Richard M. Crooks

Electric field gradients formed by electrochemical processes at bipolar electrodes continuously direct the flow of charged objects in microfluidic devices.

Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 562 ◽  
Author(s):  
Jie Li ◽  
Dilin Chen ◽  
Jian Ye ◽  
Lai Zhang ◽  
Teng Zhou ◽  
...  

The problem of water shortage needs to be solved urgently. The membrane-embedded microchannel structure based on the ion concentration polarization (ICP) desalination effect is a potential portable desalination device with low energy consumption and high efficiency. The electroosmotic flow in the microchannel of the cation exchange membrane and the desalination effect of the system are numerically analyzed. The results show that when the horizontal electric field intensity is 2 kV/m and the transmembrane voltage is 400 mV, the desalting efficiency reaches 97.3%. When the electric field strength increases to 20 kV/m, the desalination efficiency is reduced by 2%. In terms of fluid motion, under the action of the transmembrane voltage, two reverse eddy currents are formed on the surface of the membrane due to the opposite electric field and pressure difference on both sides of the membrane, forming a pumping effect. The electromotive force in the channel exhibits significant pressure-flow characteristics with a slip boundary at a speed approximately six times that of a non-membrane microchannel.


2021 ◽  
Author(s):  
Beatrise Berzina ◽  
Sungu Kim ◽  
Umesha Peramune ◽  
Kumar Saurabh ◽  
Baskar Ganapathysubramanian ◽  
...  

Ion concentration polarization (ICP) accomplishes preconcentration for bioanalysis by localized depletion of electrolyte ions, thereby generating a gradient in electric field strength that facilitates electrokinetic focusing of charged analytes by their electromigration against opposing fluid flow. Such ICP focusing has been shown to accomplish up to a million-fold enrichment of nucleic acids and proteins in single-stage preconcentrators. However, the rate at which the sample volume is swept is limited, requiring several hours to achieve these high enrichment factors. This limitation is caused by two factors. First, an ion depleted zone (IDZ) formed at a planar membrane or electrode may not extend across the full channel cross section, thereby allowing the analyte “leak” past the IDZ. Second, within the IDZ, large fluid vortices lead to mixing, which decreases the efficiency of analyte enrichment and worsens with increased channel dimensions. Here, we address these challenges with faradaic ICP (fICP) at a three-dimensional (3D) electrode comprising metallic microbeads. This 3D-electrode distributes the IDZ, and therefore, the electric field gradient utilized for counter-flow focusing across the full height of the fluidic channel, and its large area, microstructured surface supports smaller vortices. An additional bed of insulating microbeads restricts flow patterns and supplies a large area for surface conduction of ions through the IDZ. Finally, the resistance of this secondary bed enhances focusing by locally strengthening sequestering forces. This easy-to-build platform lays a foundation for the integration of enrichment with user-defined packed bed and electrode materials.


Lab on a Chip ◽  
2022 ◽  
Author(s):  
Beatrise Berzina ◽  
Sungu Kim ◽  
Umesha Peramune ◽  
Kumar Saurabh ◽  
Baskar Ganapathysubramanian ◽  
...  

Ion concentration polarization (ICP) accomplishes preconcentration for bioanalysis by localized depletion of electrolyte ions, thereby generating a gradient in electric field strength that facilitates electrokinetic focusing of charged analytes by...


2006 ◽  
Author(s):  
Vishwanath Mulukutla ◽  
Boris Khusid ◽  
Hongjun Song ◽  
Dawn J. Bennett ◽  
Conrad James

Micro-total-analytical systems for analyzing chemical/biological substances are now used across a wide variety of applications ranging from biological warfare agent detection to the healthcare industry. The first step in the operation of such systems consists of concentrating and separating the analytes of interest from the background matrix and positioning these analytes into selected locations for subsequent analysis. Electro-kinetic and electro-hydrodynamic techniques for manipulating particles in suspension are highly used in microsystems eliminating the need for movable parts. In addition, because of the high surface to volume ratio there is efficient dissipation of Joule heating. Here, we analyze the electric field distribution and particle motion in microfluidic devices with a variety of electrode configurations. First, we consider the particle motion and electric field gradient in our recently developed technique of dielectric gating. We consider the particle motion and numerical simulation results using the Computational Fluid Dynamics Research Corporation (CFDRC) code in 2D designs. In addition, the electrothermal effects within the channel are examined. Next, we consider triangular and trapezoidal electrode configurations as well as single stream particle delivery. We study the particle motion, electric field gradients, and electrothermal effects in these designs. Computer simulations and experimental results are compared.


2022 ◽  
Author(s):  
Beatrise Berzina ◽  
Sungu Kim ◽  
Umesha Peramune ◽  
Kumar Saurabh ◽  
Baskar Ganapathysubramanian ◽  
...  

Ion concentration polarization (ICP) accomplishes preconcentration for bioanalysis by localized depletion of electrolyte ions, thereby generating a gradient in electric field strength that facilitates electrokinetic focusing of charged analytes by their electromigration against opposing fluid flow. Such ICP focusing has been shown to accomplish up to a million-fold enrichment of nucleic acids and proteins in single-stage preconcentrators. However, the rate at which the sample volume is swept is limited, requiring several hours to achieve these high enrichment factors. This limitation is caused by two factors. First, an ion depleted zone (IDZ) formed at a planar membrane or electrode may not extend across the full channel cross section under the flow rate employed for focusing, thereby allowing the analyte “leak” past the IDZ. Second, within the IDZ, large fluid vortices lead to mixing, which decreases the efficiency of analyte enrichment and worsens with increased channel dimensions. Here, we address these challenges with faradaic ICP (fICP) at a three-dimensional (3D) electrode comprising metallic microbeads. This 3D-electrode distributes the IDZ, and therefore, the electric field gradient utilized for counter-flow focusing across the full height of the fluidic channel, and its large area, microstructured surface supports smaller vortices. An additional bed of insulating microbeads restricts flow patterns and supplies a large area for surface conduction of ions through the IDZ. Finally, the resistance of this secondary bed enhances focusing by locally strengthening sequestering forces. This easy-to-build platform lays a foundation for the integration of enrichment with user-defined packed bed and electrode materials.


1980 ◽  
Vol 58 (5) ◽  
pp. 629-632 ◽  
Author(s):  
H. Hernandez ◽  
R. Ferrer ◽  
M. J. Zuckermann

We discuss the influence of non-axial electric field gradients on the ordered state of amorphous ferromagnetic alloys containing rare-earth atoms.


Sign in / Sign up

Export Citation Format

Share Document