scholarly journals Effect of polar amino acid incorporation on Fmoc-diphenylalanine-based tetrapeptides

Soft Matter ◽  
2020 ◽  
Vol 16 (20) ◽  
pp. 4800-4805 ◽  
Author(s):  
A. Daryl Ariawan ◽  
Biyun Sun ◽  
Jonathan P. Wojciechowski ◽  
Ian Lin ◽  
Eric Y. Du ◽  
...  

The incorporation of polar amino acids into the Fmoc-FF motif yields tetrapeptide hydrogels whose biocompatibility in the gel state is inversely proportional to their biocompatibility in the solution state.

Amino Acids ◽  
2020 ◽  
Author(s):  
Thomas L. Williams ◽  
Debra J. Iskandar ◽  
Alexander R. Nödling ◽  
Yurong Tan ◽  
Louis Y. P. Luk ◽  
...  

AbstractGenetic code expansion is a powerful technique for site-specific incorporation of an unnatural amino acid into a protein of interest. This technique relies on an orthogonal aminoacyl-tRNA synthetase/tRNA pair and has enabled incorporation of over 100 different unnatural amino acids into ribosomally synthesized proteins in cells. Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA from Methanosarcina species are arguably the most widely used orthogonal pair. Here, we investigated whether beneficial effect in unnatural amino acid incorporation caused by N-terminal mutations in PylRS of one species is transferable to PylRS of another species. It was shown that conserved mutations on the N-terminal domain of MmPylRS improved the unnatural amino acid incorporation efficiency up to five folds. As MbPylRS shares high sequence identity to MmPylRS, and the two homologs are often used interchangeably, we examined incorporation of five unnatural amino acids by four MbPylRS variants at two temperatures. Our results indicate that the beneficial N-terminal mutations in MmPylRS did not improve unnatural amino acid incorporation efficiency by MbPylRS. Knowledge from this work contributes to our understanding of PylRS homologs which are needed to improve the technique of genetic code expansion in the future.


1955 ◽  
Vol 215 (1) ◽  
pp. 111-124 ◽  
Author(s):  
Henry Borsook ◽  
Adolph Abrams ◽  
Peter H. Lowy

1973 ◽  
Vol 51 (12) ◽  
pp. 933-941 ◽  
Author(s):  
Njanoor Narayanan ◽  
Jacob Eapen

The effect of cycloheximide in vitro and in vivo on the incorporation of labelled amino acids into protein by muscles, liver, kidneys, and brain of rats and pigeons was studied. In vitro incorporation of amino acids into protein by muscle microsomes, myofibrils, and myofibrillar ribosomes was not affected by cycloheximide. In contrast, administration of the antibiotic into intact animals at a concentration of 1 mg/kg body weight resulted in considerable inhibition of amino acid incorporation into protein by muscles, liver, kidneys, and brain. This inhibition was observed in all the subcellular fractions of these tissues during a period of 10–40 min after the administration of the precursor. Tissue homogenates derived from in vivo cycloheximide-treated animals did not show significant alteration in in vitro amino acid incorporation with the exception of brain, which showed a small but significant enhancement.


1976 ◽  
Vol 35 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Turner ◽  
P. J. Reeds ◽  
K. A. Munday

1. Net amino acid uptake, and incorporation into protein have been measured in vitro in the presence and absence of porcine growth hormone (GH) in muscle from intact rabbits fed for 5 d on low-protein (LP), protein-free (PF) or control diets.2. In muscle from control and LP animals GH had no effect on the net amino acid uptake but stimulated amino acid incorporation into protein, although this response was less in LP animals than in control animals.3. In muscle from PF animals, GH stimulated both amino acid incorporation into protein and the net amino acid uptake, a type of response which also occurs in hypophysectomized animals. The magnitude of the effect of GH on the incorporation of amino acids into protein was reduced in muscle from PF animals.4. The effect of GH on the net amino acid uptake in PF animals was completely blocked by cycloheximide; the uptake effect of GH in these animals was dependent therefore on de novo protein synthesis.5. It is proposed that in the adult the role of growth hormone in protein metabolism is to sustain cellular protein synthesis when there is a decrease in the level of substrate amino acids, similar to that which occurs during a short-term fast or when the dietary protein intake is inadequate.


1960 ◽  
Vol 198 (1) ◽  
pp. 54-56 ◽  
Author(s):  
Ira G. Wool

When diaphragms isolated from normal rats were incubated with a C14-amino acid the addition of epinephrine or norepinephrine decreased incorporation of C14 into muscle protein. The inhibition occurred whether epinephrine was added in vitro or administered in vivo. The minimal effective concentration of epinephrine in vitro was 0.1 µg/ml. When the glucose concentration in the medium was raised to 300 mg % or more the epinephrine induced inhibition of amino acid incorporation into muscle protein was no longer observed.


1957 ◽  
Vol 40 (3) ◽  
pp. 451-490 ◽  
Author(s):  
V. G. Allfrey ◽  
A. E. Mirsky ◽  
Syozo Osawa

1. Nuclei prepared from calf thymus tissue in a sucrose medium actively incorporate labelled amino acids into their proteins. This is an aerobic process which is dependent on nuclear oxidative phosphorylation. 2. Evidence is presented to show that the uptake of amino acids represents nuclear protein synthesis. 3. The deoxyribonucleic acid of the nucleus plays a role in amino acid incorporation. Protein synthesis virtually ceases when the DNA is removed from the nucleus, and uptake resumes when the DNA is restored. 4. In the essential mechanism of amino acid incorporation, the role of the DNA can be filled by denatured or partially degraded DNA, by DNAs from other tissues, and even by RNA. Purine and pyrimidine bases, monoribonucleotides, and certain dinucleotides are unable to substitute for DNA in this system. 5. When the proteins of the nucleus are fractionated and classified according to their specific activities, one finds the histones to be relatively inert. The protein fraction most closely associated with the DNA has a very high activity. A readily extractable ribonucleoprotein complex is also extremely active, and it is tempting to speculate that this may be an intermediary in nucleocytoplasmic interaction. 6. The isolated nucleus can incorporate glycine into nucleic acid purines, and orotic acid into the pyrimidines of its RNA. Orotic acid uptake into nuclear RNA requires the presence of the DNA. 7. The synthesis of ribonucleic acid can be inhibited at any time by a benzimidazole riboside (DRB) (which also retards influenza virus multiplication (11)). 8. The incorporation of amino acids into nuclear proteins seems to require a preliminary activation of the nucleus. This can be inhibited by the same benzimidazole derivative (DRB) which interferes with RNA synthesis, provided that the inhibitor is present at the outset of the incubation. DRB added 30 minutes later has no effect on nuclear protein synthesis. These results suggest that the activation of the nucleus so that it actively incorporates amino acids into its proteins requires a preliminary synthesis of ribonucleic acid. 9. Together with earlier observations (27, 28) on the incorporation of amino acids by cytoplasmic particulates, these results show that protein synthesis can occur in both nucleus and cytoplasm.


2019 ◽  
Author(s):  
Fred R. Ward ◽  
Zoe L. Watson ◽  
Omer Ad ◽  
Alanna Schepartz ◽  
Jamie H. D. Cate

AbstractRibosome engineering has emerged as a promising field in synthetic biology, particularly concerning the production of new sequence-defined polymers. Mutant ribosomes have been developed that improve the incorporation of several non-standard monomers including D-amino acids, dipeptides, and β-amino acids into polypeptide chains. However, there remains little mechanistic understanding of how these ribosomes catalyze incorporation of these new substrates. Here we probed the properties of a mutant ribosome–P7A7–evolved for better in vivo β-amino acid incorporation through in vitro biochemistry and cryo-electron microscopy. Although P7A7 is a functional ribosome in vivo, it is inactive in vitro, and assembles poorly into 70S complexes. Structural characterization revealed large regions of disorder in the peptidyltransferase center and nearby features, suggesting a defect in assembly. Comparison of RNA helix and ribosomal protein occupancy with other assembly intermediates revealed that P7A7 is stalled at a late stage in ribosome assembly, explaining its weak activity. These results highlight the importance of ensuring efficient ribosome assembly during ribosome engineering towards new catalytic abilities.


1969 ◽  
Vol 5 (2) ◽  
pp. 321-332 ◽  
Author(s):  
D. P. BLOCH ◽  
CHRISTINA TENG

The X chromosome of the Rehnia spinosus (Orthoptera) spermatocyte exists in a vesicle separate from the rest of the nucleus during its replication. This chromosome is typically heterochromatic, and late replicating. After replication the chromosome vesicle fuses with the nucleus. Cytophotometric determination of DNA and histone during replication of the chromosome revealed two types of histone. One class increases in amount in proportion to the DNA. The second class remains constant as DNA doubles, and probably increases later. Autoradiographic studies of incorporation of amino acids indicates that histone labelling occurs during chromosome replication. However, a lag in amino acid incorporation suggests that DNA replication in the X chromosome, while accompanied, or closely followed, by complexing with histone, is not necessarily coupled with its synthesis.


1959 ◽  
Vol 37 (1) ◽  
pp. 687-697
Author(s):  
E. Stachiewicz ◽  
J. H. Quastel

A study has been made of the effects of dihydrostreptomycin on amino acid incorporation into the proteins of M. tuberculosis (BCG). Suspensions of this organism on incubation at 37° with glycine-1-C14give rise, aerobically, to labelled proteins in which 80% of the radioactivity appears in the glycine and serine moieties of the proteins and about 20% in alanine and aspartic acid. In presence of glycine-2-C14, radioactivity appears in a larger number of amino acids of the protein. Incubation with serine-3-C14leads to a distribution of radioactivity in the amino acids in BCG proteins but alanine-1-C14and valine-1-C14give rise to proteins with the radioactivity almost entirely in the corresponding amino acids. The process of aerobic incorporation of radioactivity from glycine-1-C14in BCG proteins is stimulated by the presence of glucose, glycerol, sodium pyruvate, sodium stearate, or sodium benzoate in the medium in which the cells are incubated, the rate of incorporation being approximately constant over a period of 4 hours. The incorporation depends largely on the presence of oxygen. Dihydrostreptomycin (33 μg per ml) markedly inhibits labelling of proteins in the cell suspensions in presence of radioactive amino acids, the inhibition increasing with concentration of the streptomycin to an optimal concentration of 200 μg/ml. Penicillin and isonicotinic hydrazide are inactive but chloromycetin is an effective inhibitor. Cyanide, arsenite, and azide are inhibitory. The presence of lecithin stimulates incorporation of radioactivity from glycine-1-C14into BCG proteins. Dihydrostreptomycin inhibitions of amino acid incorporation into BCG proteins increase with time of incubation of the cells with the drug. Concentrations of dihydrostreptomycin that inhibit labelled amino acid incorporation into labelled proteins by 50% have no effect on BCG respiration. The drug has no inhibitory effect on labelled amino acid incorporation in E. coli or Ehrlich ascites carcinoma cells in vitro but is effective with M. phlei. It does not affect selectively the distribution of radioactivities of the component amino acids of BCG proteins; only the total radioactivity incorporated into the proteins is diminished. The results lead to the conclusion that dihydrostreptomycin brings about an inhibition of protein synthesis in the BCG strain of M. tuberculosis at concentrations at which it exerts antibiotic effects.


Sign in / Sign up

Export Citation Format

Share Document